
Paper presented at the IEEE International Ultrasonics Symposium, Chicago, Il., USA, 2014:

A Multi-threaded Version of Field II

Jørgen Arendt Jensen

Center for Fast Ultrasound Imaging,
Biomedical Engineering group, Department of Electrical Engineering, Bldg. 349,
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

To be published in Proceedings of IEEE International Ultrasonics Symposium, Chicago, Il., USA, 2014.

http://bme.elektro.dtu.dk/jaj/
http://www.cfu.elektro.dtu.dk/
http://www.bme.elektro.dtu.dk/
http://www.dtu.dk/


A Multi-threaded Version of Field II
Jørgen Arendt Jensen

Center for Fast Ultrasound Imaging, Department of Electrical Engineering,
Technical University of Denmark, DK-2800 Lyngby, Denmark

Abstract—A multi-threaded version of Field II has been
developed, which automatically can use the multi-core capabil-
ities of modern CPUs. The memory allocation routines were
rewritten to minimize the number of dynamic allocations and
to make pre-allocations possible for each thread. This ensures
that the simulation job can be automatically partitioned and
the interdependence between threads minimized. The new code
has been compared to Field II version 3.22, October 27, 2013
(latest free-ware version). A 64 element 5 MHz focused array
transducer was simulated. One million point scatterers randomly
distributed in a plane of 20 x 50 mm (width x depth) with
random Gaussian amplitudes were simulated using the command
calc scat. Dual Intel Xeon CPU E5-2630 2.60 GHz CPUs were
used under Ubuntu Linux 10.02 and Matlab version 2013b. Each
CPU holds 6 cores with hyper-threading, corresponding to a total
of 24 hyper-threading cores. The averaged simulation time for 10
realizations for the old version was 85.1 s. A single thread run
for the new version took 27.7 s; a speed-up of 3.1. Employing
all 24 cores gave a simulation time of 3.27 s for the one million
scatterers corresponding to a speed-up factor of 26 times. The
speed-up in general depends on the transducer, scatterers and
simulation, and it varies across applications between 13 and 30.
The program is fully compatible with older versions, and only
a single command has been added for setting the number of
threads to use. The division of labor is automatically handled by
the program. For a phantom with 100,000 scatterers, it is now
possible to simulate a full 128 line image in around 42 seconds
with full precision.

I. INTRODUCTION

Simulation of new imaging schemes and estimation methods
is now the first step in their development. This often entails
Monte Carlo simulations for a range of parameter values in-
volving a large collection of scatterers. This inevitably leads to
long simulation times for the many channels in modern array
transducers. Many groups have devised simulation solutions.
This includes Ultrasim from Sverre Holm’s group [1] and the
program in D’hooge’s group [2] both of which are based on
spatial impulse responses. An accelerated version based one
GPU implementation has also been made [3]. Another GPU
solution was developed in [4], which is based on convolving
a point spread function with a scatterer map. This in general
gives a very fast solution, but demands specialized hardware
and does not fully model the spatial variation and complexity
of ultrasound fields.

Another solution is to use the angular spectrum approach
as in the Focus program [5]. This use the continuous wave
solution to calculate the field in a plane. This is a fast approach,
but many frequency components have to be summed to get the
temporal response, and the fixed plane can be restrictive for

flow simulations.

A more general solution using finite element modeling was
developed by Pinton and Trahey [6]. This can also include
inhomogeneous media and non-linear propagation, but leads
to very long simulation times (days on computer clusters)
making it less ideal for parameter optimization. A general k-
space approach was developed in [7], but still has the problem
of very long simulation times.

The most widely used simulation code is Field II [8], [9],
which has been cited more than 690 times (ISI Web of science,
August, 2014). It has been used in numerous investigations of
advanced imaging techniques. It is based on spatial impulse
responses [10], [11], [12]. This is a general method for any
linear simulation and has shown to be a very accurate solution
in numerous studies. The initial version of the Field program
was developed in 1990 on an Apollo DN3000 workstation
with a peak calculation speed of 72 kFlOPS and very limited
RAM resources. Modern processors have access to Gbytes
of RAM and can yield around 10-100 GFLOPS. This made
it possible to use Field II in Monte Carlo simulations of
very large parameter studies for e.g. 3-D imaging, vector
velocity imaging, and other applications. The studies, however,
often take a significant amount of CPU time, and have to be
conducted using many invocations of Matlab in parallel on
cluster computers. This often also entails writing programs
with synchronization between the different invocations. The
purpose of this work is to develop a multi-threaded version of
Field II, which uses all the benefits of modern CPUs to reduce
computation time.

Older workstations only contained one CPU, and RAM ac-
cess was fast compared to the time for executing floating point
operations. Current CPUs hold multiple computing cores, and
the RAM access time is large compared to the time for one
floating point calculation. They also house generous caches
for speeding up data access. This is used in a new multi-
threaded version of Field II that uses dynamic partition of the
calculation. The memory allocation routines were rewritten to
minimize the number of dynamic allocations to increase cache
usage and to make pre-allocations possible for each thread.
This ensures that the simulation job can be automatically par-
titioned and the interdependence between threads minimized.
The principles behind the design is discussed in Section II.
Results from using the code are given in Section III and
discussed in Section IV.



II. COMPUTER ARCHITECTURES

Simulation of ultrasound imaging is inherently parallel. The
arrays consists of many elements, scattering emanates from a
large and independent collection of scatterers, imaging is often
done in many independent directions, and often simulations
also have to be conducted over time for e.g. flow imaging.
There are, thus, many ways in which simulation jobs can be
partitioned.

Traditionally the division has been over imaging lines and
time [13], [14]. One job is made for one imaging direction
and the resulting signal stored in a file. Several computers can
then automatically partition the work by using a shared disk
storage and store a dummy file before the job is executed.
The existence of a result file indicates that the line has
been simulated or that another computer is taking care of
the job. This works for jobs running from minutes to hours
with limited race conditions on storing the file. This could
also be handled automatically through batch systems and pre-
allocation of resources, although it demands some overhead
and a mechanism for handling non-completed jobs.

Another approach is to simulate all combinations of transmit
and receive signals as in [14]. The beamforming is then not
included in the simulation and is performed afterwards. The
approach has shown to give roughly a factor 6 times faster
simulation time, but at the cost of having to perform the
beamforming afterwards. It also uses quite some memory as
N2 signals have to be made for a transducer with N elements.
The speed-up is generated from only simulating the signal
from each scatterer one time and not for every imaging line.

The major drawback of these methods is that the overall
simulation time are still significant before the first results
are found, and that parallel programs have to be made for
the simulation. The purpose of this paper is to demonstrate
how a parallel version of Field II can speed up the execution
time without the user making modifications to his code. The
implementation also more efficiently makes use of the memory
and cache in the computer as only one instance of Matlab is
used.

The architecture of a modern multi-core CPU is shown in
Fig. 1. The processor consists of 8 cores with a small L1+L2
cache that can house a limited amount of data. The caches
are used for having a very fast access to the program and
data. A shared L3 cache is also associated with the processors.
It is, thus, important that the data being processed can be
housed inside the caches as cache misses often have a very
high overhead from the fetching of data from RAM.

Field II principally uses memory for two objects: The first
object is the parametric description of the transducer and
its function in terms of impulse response, apodizations and
focusing. The second object is dynamically allocated signals.
These are used for the calculated signals like spatial impulse
responses and received signals. A new signal is allocated
every time a spatial impulse response from a transducer
element is found or a number of signals combined. A typical
calculation is performed for 192 element transducer arrays for

Fig. 1. Cache architecture of Intel Xeon processor with 8 cores
(taken from https://software.intel.com/en-us/articles/intel-xeon-processor-e5-
26004600-product-family-technical-overview).

1 million point scatterers. This will entail the allocation of
2×1 ·106 ×192 = 384 ·106 signals for each image line. It is
a key aspect of Field II that this is dynamic to avoid having
restrictions on transducer size, number of scatterers, or length
of signals. This has allowed the program to also simulate
large 2-D arrays and large phantoms. Allocating new memory,
however, often has a high overhead in computer systems and
should in general be minimized.

The approach taken here is to have a common description
of the transducer, which is used by all threads. It will therefore
quickly be placed in the L3 cache. The dynamic signal
allocation is maintained, but the memory of unused signals are
not released to the operating system, but are put on a queue.
Requesting a new signal will therefore most likely give a signal
already residing in the cache memory. Also pre-allocation
of internal variables, that can be used, has been optimized
in the code. Therefore allocation is often done outside the
most computationally intense routines to minimize allocations.
These three approaches have made it possible to make an
implementation that nearly scales with the number of cores.

III. SIMULATION METHOD AND RESULTS

The new code has been run on a Dual Intel Xeon R© E5-
2630 2.60 GHz CPU with 32 Gbytes RAM under Ubuntu
Linux and Matlab version 2013b. Each processor has 6 real
cores that are hyper-threaded to behave like 12 cores for a
single CPU in total giving 24 hyper-threaded cores. Hyper-
threaded cores often give an increase in performance as the
utilization of the core is increased, but it should be emphasized
that hyper-threading does not give two independent CPU cores
in one physical core.

2



TABLE I
SIMULATION PARAMETERS USED FOR THE PERFORMANCE ANALYSIS.

Sampling frequency fs 100 MHz
Speed of sound c 1540 m/s
Transducer center frequency f0 5 MHz
Number of cycles in pulse M 2
Wavelength lambda λ = c/ f0 0.308 mm
Width of element λ/2 0.154 mm
Height of element h 5 mm
Kerf ke = λ/10 0.031 mm
Fixed focal point fc [0 0 60] mm
Number of physical elements Ne 64
Pulse duration Tp = M/ f0 0.4 µs

0 5 10 15 20 25
0

5

10

15

20

25

30

Number of threads

S
pe

ed
 u

p 
ra

tio

Speed up ration relative to reference times on 
Dual Intel(R) Xeon(R) CPU E5−2630 v2 @ 2.60 GHz, 24 cores

Fig. 2. Attained speed-up for Field IIpro compared to the Field II version
3.22, October 27, 2013 for Dual Intel Xeon E5-2630 2.60 GHz CPUs for a
phased array transducer.

The code performance is measured using a point scatterer
simulation with the parameters shown in Table I. A 64 element
phased array is used to mimic a real imaging situation. Signals
from a random collection of one million Gaussian distributed
scatterers in front of the transducer is simulated at a range
of depths and lateral positions. The scatterers have a depth
from 5 to 55 mm and a lateral range from -10 to 10 mm.
This ensures that many different spatial impulse responses are
simulated for nearly any lateral, elevation, and depth position.
Also dynamic focusing and apodization are included in the
simulation. The simulation time is measured using the Matlab
commands tic/toc and the average of 10 simulation runs are
shown in the graphs below.

The result of the simulation is shown in Fig. 2. The attained
speed-up compared to the public Field II web version 3.22,
October 27, 2013 is shown. The x-axis shows the number of
threads initiated in the program and the y-axis is the speed-up
compared to the web version. The averaged simulation time
for 10 realizations for the web free-ware version was 85.1 s.
A single thread run for the new version took 27.7 s, a speed-
up of 3.1. This is due to the pre-allocation of memory for the
innermost part of the spatial impulse response calculation. This
is attained when a number of scatterer responses are simulated

0 5 10 15 20 25
0

5

10

15

20

25

Number of threads

S
pe

ed
 u

p 
ra

tio

Speed up ration relative to reference times on 
Dual Intel(R) Xeon(R) CPU E5−2630 v2 @ 2.60 GHz, 24 cores

Fig. 3. Attained speed-up for Field IIpro compared to the Field II version
3.22, October 27, 2013 for Dual Intel Xeon E5-2630 2.60 GHz CPUs for a
convex array transducer.

as the pre-allocation is only performed once. Employing all
24 cores gave a simulation time of 3.27 s for the one million
scatterers corresponding to a speed-up factor of 26 times. For
a phantom with 100,000 scatterers, this makes it possible to
simulate a full 128 line image in around 42 seconds with full
precision. The speed-up is nearly linear until the number of
physical cores is reached. After 12 threads the advantage of
using more threads tapers off as two hyper-threading cores
does not give an increase in speed of a factor of 2.

The red line is Fig. 2 indicates a linear speed-up with the
number of threads run. This ideally indicates how using more
and more invocations of Matlab would scale a simulation
although this probably is optimistic. The new version would
always be preferable to using multiple Matlab invocations.

A second example shown in Fig. 3 simulates a 192 element
5 MHz focused convex array transducer with 40 mathematical
rectangular elements per physical element. The elevation focus
was at 40 mm and the convex radius was 80 mm. One million
point scatterers randomly distributed in a plane of 20 x 50
mm (width x depth) with a random Gaussian amplitude were
simulated using the command calc scat on the same CPU. The
speed-up scales fairly linearly with the number of threads. At
12 threads a speed up of a factor of 13 is attained. After this
the speed up tapers of until 24 threads, which attained a factor
of 19. This is due to the employment of hyper-threading as
the CPU has 12 physical cores and 24 hyper-threaded cores.

The consequence for simulating 1 million point scatterers
is shown in Fig. 4, where the simulation time is shown
as a function of the number of threads. For one thread it
nearly takes 13 minutes, whereas the 24-thread solution cuts
the simulation time to 60 seconds. The speed-up in general
depends on the transducer, scatterers and simulation, and it
varies across applications between 13 and 30.

The parallel execution can also be employed on the solution
using bounding lines. The result from this is shown in Fig. 5.

3



0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

Number of threads

E
xe

cu
tio

n 
tim

es
 p

er
 m

ill
io

n 
sc

at
te

re
rs

 [s
]

Execution times as a function of number of threads on 
Dual Intel(R) Xeon(R) CPU E5−2630 v2 @ 2.60 GHz, 24 cores

Fig. 4. Time for simulating 1 million point scatterers using a number of
threads for Dual Intel Xeon E5-2630 2.60 GHz CPUs.

0 5 10 15 20 25
0

5

10

15

Number of threads

S
pe

ed
 u

p 
ra

tio

Speed up ration relative to one core on 
Dual Intel(R) Xeon(R) CPU E5−2630 v2 @ 2.60 GHz, 24 cores

Fig. 5. Speed-up rate compared to running a single thread for the bounding
lines method.

The same trend as for the rectangles solution is seen with an
increase in speed nearly proportional to the number of threads.

IV. DISCUSSION AND CONCLUSION

Simulation of ultrasound imaging and parameter studies
often take a significant number of CPU hours, and they, thus,
have to be parallelized to get an efficient development cycle. It
is fairly easy to partition the simulation into a number of partial
simulations usually as one emission per simulation. Alterna-
tively, the number of scatterers can be partitioned into groups
for simulation by a number of computers. The responses then
have to be combined after simulation. This involves some
work, but the largest drawback is the involvement of a number
of Matlab invocations with memory overhead and duplications
of transducer and scatterer descriptions in memory. This
increases the demand for storage and makes use of the internal
CPU cache less efficient. A better solution is therefore to
automatically partition the job within the simulation program,
although this makes writing the program significantly more
difficult. Internal acceleration can be performed using spe-

cialized hardware like GPUs, or use the parallel hardware
in modern CPUs. The latter is the approach taken in this
paper. The performance of the implementation was tested by
simulating for a large number of random scatterers for phased
and convex array transducers and tabulating the execution time
as function of the number of threads employed. A speed-
up for the parallel Field IIpro version roughly proportional
to the number of real cores was attained. A decrease in
performance was seen when the number of threads exceeded
the number of physical cores and the CPU had to resort to
hyper-threading. The parallel performance gain was attained
by using pre-allocation, reuse of memory in the cache, and
multi-threaded execution. This also resulted in a speed up of
a factor 3.1 compared to the non-optimized version for a single
thread execution for the linear array case. The program is fully
compatible with older versions, and the new version has been
validated and show to yield identical results compared to the
old version within machine precision. Only a single command
for setting the number of threads to use has been added, and
the division of labor is automatically handled by the program.
This will accelerate the development cycle without having
to write parallel code and having to invoke multiple Matlab
sessions.

REFERENCES

[1] J. P. Asen and S. Holm, “Huygens on speed: Interactive simulation of
ultrasound pressure fields,” in Proc. IEEE Ultrason. Symp., 2012, pp.
1643–1646.

[2] J. D’hooge, J. Nuyts, B. Bijnens, P. DeMan, P. Suetens, J. Thoen,
M. Herregods, and F. VandeWerf, “The calculation of the transient near
and far field of a baffled piston using low sampling frequencies,” J.
Acoust. Soc. Am., vol. 102, no. 1, pp. 78–86, 1997.

[3] L. Tong, A. Ortega, H. Gao, and J. D’hooge, “Fast three-dimensional
ultrasound cardiac imaging using multi-transmit beam forming: A sim-
ulation study,” Proc. IEEE Ultrason. Symp., pp. 1448–1451, 2013.

[4] S. U. Gjerald, R. Brekken, T. Hergum, and J. D’hooge, “Real-time
ultrasound simulation using the GPU,” in Proc. IEEE Ultrason. Symp.,
2012, pp. 258–261.

[5] X. Zeng and R. J. McGough, “Evaluation of the angular spectrum
approach for simulations of near-field pressures,” J. Acoust. Soc. Am.,
vol. 123, pp. 68–76, 2007.

[6] G. Pinton and G. Trahey, “Full-wave simulation of finite-amplitude
ultrasound in heterogeneous media,” in Proc. IEEE Ultrason. Symp.,
2007, pp. 130–133.

[7] B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling
nonlinear ultrasound propagation in heterogeneous media with power
law absorption using a k-space pseudospectral method,” J. Acoust. Soc.
Am., vol. 131, no. 6, pp. 4324–4336, 2012.

[8] J. A. Jensen and N. B. Svendsen, “Calculation of Pressure Fields from
Arbitrarily Shaped, Apodized, and Excited Ultrasound Transducers,”
IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 39, pp. 262–267,
1992.

[9] J. A. Jensen, “Field: A program for simulating ultrasound systems,” Med.
Biol. Eng. Comp., vol. 10th Nordic-Baltic Conference on Biomedical
Imaging, Vol. 4, Supplement 1, Part 1, pp. 351–353, 1996.

[10] G. E. Tupholme, “Generation of acoustic pulses by baffled plane
pistons,” Mathematika, vol. 16, pp. 209–224, 1969.

[11] P. R. Stepanishen, “Transient radiation from pistons in an infinite planar
baffle,” J. Acoust. Soc. Am., vol. 49, pp. 1629–1638, 1971.

[12] ——, “Pulsed transmit/receive response of ultrasonic piezoelectric trans-
ducers,” J. Acoust. Soc. Am., vol. 69, pp. 1815–1827, 1981.

[13] J. A. Jensen and P. Munk, “Computer phantoms for simulating ultra-
sound B-mode and CFM images,” in Acoustical Imaging, S. Lees and
L. A. Ferrari, Eds., vol. 23, 1997, pp. 75–80.

[14] J. A. Jensen and S. Nikolov, “Fast simulation of ultrasound images,” in
Proc. IEEE Ultrason. Symp., vol. 2, 2000, pp. 1721–1724.

4


	I Introduction
	II Computer architectures
	III Simulation Method and Results
	IV Discussion and Conclusion
	References

