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A new procedure for the calculation of spatial impulse responses for linear sound fields is
introduced. This calculation procedure uses the well known technique of calculating the spatial
impulse response from the intersection of a circle emanating from the projected spherical wave with
the boundary of the emitting aperture. This general result holds for all aperture boundaries for a flat
transducer surface, and is used in the procedure to yield the response for all types of flat trans-
ducers. An arbitrary apodization function over the aperture can be incorporated through a
simple one-dimensional integration. The case of a soft baffle mounting of the aperture is also
included. Specific solutions for transducer boundaries made from lines are given, so that any
polygon transducer can be handled. Specific solutions for circles are also given. Finally, a solu-
tion for a general boundary is stated, and all these boundary elements can be combined to,
e.g., handle annular arrays or semi-circle transducers. Results from an implementation of the
approach are given and compared to previously developed solutions for a simple aperture, a
complex aperture, and a Gaussian apodized circular transducer. ©1999 Acoustical Society of
America.@S0001-4966~99!01406-X#

PACS numbers: 43.35.Cg, 43.20.Px@HEB#
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INTRODUCTION

The calculation of linear, acoustic fields is most oft
based on the spatial impulse response approach as sugg
by Tupholme and Stepanishen.1–3 Here the pulsed pressur
field is found from a convolution between the acceleration
the transducer surface and the spatial impulse response
impulse response has been found for a number of geome
~round flat piston,2 round concave,4,5 flat rectangle,6,7 and flat
triangle8!. The solutions arrived at are often complicate
since it involves the evaluation of the Rayleigh surface in
gral. The response depends on the relative position of
field point and many special cases exist, which makes b
the derivation of the solution difficult and the evaluation
the responses cumbersome. For example, to evaluate th
sponse from a rectangle, four synthetic rectangles are in
duced, and when evaluating a triangle, three synthetic
angles are introduced to account for the 15 different poss
cases of triangle shape and field point positions. This ma
it necessary to use computers for evaluating and interpre
the responses, since the formulas do not readily give a us
perception of the solution.

It would be appropriate to arrive at general solutions
any geometry that would be both easy to derive analytic
and fast to evaluate with a computer. This has previou
been achieved by dividing the aperture surface into sma
elements like rectangles9 or triangles,10 and then summing
the response for the sub-elements. Often the transducer
be divided into many elements and only a piecewise appr
mation to the apodization is obtained. The fitting to the
tual surface is also only approximative for round or ov
surfaces; even when using a triangular shape.
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Spatial impulse responses from bounded and n
apodized apertures always have discontinuities due to t
sharp edges, which makes it difficult to keep the full ener
and spectral content in a sampled evaluation. Various te
niques have been applied for coping with the discontinuit
in the spatial impulse response. This has included using v
high sampling frequencies, making a time adapted eva
tion, or using the integrated response. Computer evalua
is, thus, always necessary, when evaluating spatial imp
responses.

This paper therefore suggests a new procedure for
culating the spatial impulse response in which the compu
is involved at an earlier stage in the evaluation of the
sponses. The response is determined by the crossings o
boundary of the aperture by the spherical wave emitted fr
the field point. For flat apertures this observation make
possible to derive a general approach for calculating the s
tial impulse response for any aperture geometry and find
response with no approximation. The paper derives impu
responses for apertures described by bounding lines
circles and outlines how the response can be evaluated
apertures bounded by any polynomial in the plane’s coo
nates (x,y). Some of the intersections need not always
calculated, and this is used to devise an optimized algori
that only needs to find the minimum number of intersectio
It is also shown in Sec. III how an arbitrary apodization c
be introduced through a previously developed simple o
dimensional integration, and how the solution also can
applied to both the soft baffle and rigid baffle situations.
number of examples from use of the approach are given
Sec. VII. Among these is a comparison between the tra
3266(6)/3266/9/$15.00 © 1999 Acoustical Society of America
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tional solution for a rectangle and the new approach, wh
both yield the same response.

I. BASIC THEORY

A short review of the calculation of spatial impulse r
sponses is given in this section to facilitate the developm
of the new calculation procedure.

The spatial impulse response is found from the Rayle
integral given by:2,11

h~r1 ,t !5E
S

dS t2
ur12r2u

c D
2pur12r2u

dS ~1!

when the apertureS is mounted in an infinite, rigid baffle
Here r1 denotes the position of the field point,r2 denotes a
position on the aperture,c is the speed of sound, andt is
time. The integral is essentially a statement of Huyghe
principle that the field is found by summing the radiat
spherical waves from all parts of the aperture. This can a
be reformulated, due to acoustic reciprocity, as finding
part of the spherical wave emanating from the field point t
intersects the aperture. The task is, thus, to project the
point onto the plane coinciding with the aperture, and th
find the intersection of the projected spherical wave~the
circle! with the active aperture as shown in Fig. 1.

Rewriting the integral into polar coordinates gives:

FIG. 2. Definition of distances and angles in the aperture plan for evalua
the Rayleigh integral.

FIG. 1. Intersection of spherical waves from the field point by the apert
when the field point is projected onto the plane of the aperture.
3267 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999
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h~r1 ,t !5E
Q1

Q2E
d1

d2
dS t2

R

c D
2pR

r dr dQ, ~2!

where r is the radius of the projected circle andR is the
distance from the field point to the aperture given byR2

5r 21zp
2. Here zp is the field point height above thex2y

plane of the aperture. The projected distancesd1 ,d2 are de-
termined by the aperture and are the distance closest to
furthest away from the aperture, andQ1 ,Q2 are the corre-
sponding angles for a given time~see Fig. 2!.

Introducing the substitution 2R dR52r dr gives

h~r1 ,t !5
1

2p E
Q1

Q2E
R1

R2
dS t2

R

c DdR dQ. ~3!

The variablesR1 and R2 denote the edges closest to a
furthest away from the field point. Finally using the subs
tution t85R/c gives
g

FIG. 3. Flow chart for the simple approach for calculating the spatial
pulse response.

,
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FIG. 4. Flow chart for the optimized
approach for calculating the spatia
impulse response.
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h~r1 ,t !5
c

2p E
Q1

Q2E
t1

t2
d~ t2t8!dt8 dQ. ~4!

For a given time instance the contribution along the arc
constant and the integral gives

h~r1 ,t !5
Q22Q1

2p
c ~5!

when assuming the circle arc is only intersected once by
aperture. The anglesQ1 andQ2 are determined by the inter
section of the aperture and the projected spherical wave,
the spatial impulse response is, thus, solely determined
these intersections, when no apodization of the apertur
used. The response can therefore be evaluated by kee
track of the intersections as a function of time.

II. A NEW CALCULATION PROCEDURE

From the derivation in the last section it can be seen
the spatial impulse response in general can be expresse

h~r1 ,t !5
c

2p (
i 51

N~ t !

@Q2
~ i !~ t !2Q1

~ i !~ t !#, ~6!

where N(t) is the number of arc segments that cros
the boundary of the aperture for a given time andQ2

( i )(t),
Q1

( i )(t) are the associated angles of the arc. This was
noted by Stepanishen.12 The calculation can, thus, be formu
3268 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999
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lated as finding the angles of the aperture edge’s inter
tions with the projected spherical wave, sorting the ang
and then summing the arc angles that belong to the aper
Finding the intersections can be done from the description
the edges of the aperture. A triangle can be described
three lines, a rectangle by four, and the intersections are
found from the intersections of the circle with the lines. Th
makes it possible to devise a general procedure for calcu
ing spatial impulse responses for any flat, bounded apert
since the task is just to find the intersections of the bound
with the circle.

The spatial impulse response is calculated from the t
the aperture first is intersected by a spherical wave to
time for the intersection furthest away. The intersections
found for every time instance and the corresponding ang
are sorted. The angles lie in the interval from 0 to 2p. It is
then found whether the arc between two angles belong
the aperture, and the angle difference is added to the sum
the arc segment is inside the aperture. This yields the sp
impulse response according to Eq.~6!. The approach can be
described by the flow chart shown in Fig. 3.

The only part of the algorithm specific to the aperture
the determination of the intersections and the whether
point is inside the aperture. Section IV shows how this
done for polygons, Sec. V for circles, and Sec. VI for high
order parametric boundaries.

All the intersections need not be found for all time
New intersections are only introduced, when a new edge
3268Jo”rgen Arendt Jensen: Spatial impulse response in ultrasound
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corner of the aperture is met. Between times when two s
corners or edges are encountered the number of intersec
remains constant and only intersections, which belong
points inside the aperture need be found. Note that an a
ture edge gives rise to a discontinuity in the spatial impu
response. Also testing whether the point is inside the a
ture is often superfluous, since this only needs to be fo
once after each discontinuity in the response. These two
servations can significantly reduce the number of calcu
tions, since only the intersections affecting the response
found. The flow chart for the optimized approach is shown
Fig. 4.

The procedure first finds the number of discontinuiti
Then only intersection influencing the response are ca
lated between two discontinuity points. This can potentia
make the approach faster than the traditional approa
where the response from a number of different rectangle
triangles must be calculated.

III. APODIZATION AND SOFT BAFFLE

Often ultrasound transducers do not vibrate as a pis
over the aperture. This can be due to the clamping of
active surface at its edges, or intentionally to reduce s
lobes in the field. Applying for example a Gaussian apodi
tion will significantly lower side lobes and generate a fie
with a more uniform point spread function as a function
depth. Apodization has previously been found and is int
duced in Eq.~2! by writing13

h~r1 ,t !5E
Q1

Q2E
d1

d2
ap~r ,Q!

dS t2
R

c D
2pR

r dr dQ ~7!

in which ap(r ,Q) is the apodization over the aperture. Usi
the same substitutions as before yields

h~r1 ,t !5
c

2p E
Q1

Q2E
t1

t2
ap1~ t8,Q!d~ t2t8!dt8 dQ, ~8!

whereap1(t8,Q)5ap(A(ct8)22zp
2,Q). The inner integral is

a convolution of the apodization function with ad-function
and readily yields

FIG. 5. Definition of angle used for a soft baffle.
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h~r1 ,t !5
c

2p E
Q1

Q2
ap1~ t,Q!dQ ~9!

as noted by several authors.13–15 The response for a given
time point can, thus, be found by integrating the apodizat
function along the fixed arc with a radius ofr 5A(ct)22zp

2

for the angles for the active aperture. Any apodization fu
tion can therefore be incorporated into the calculation
employing numerical integration.

Often the assumption of an infinite rigid baffle for th
transducer mounting is not appropriate and another form
the Rayleigh integral must be used. For a soft baffle,
which the pressure on the baffle surface is zero,
Rayleigh–Sommerfeld integral is used. This is~Ref. 16, pp.
46–50!

hs~r1 ,t !5E
S

dS t2
ur12r2u

c D
2pur12r2u

cosw dS, ~10!

assuming thatur12r2u@l. Here cosw is the angle between
the line through the field point orthogonal to the apertu
plane and the radius of the spherical wave as shown in
5. The anglesw is fixed for a given radius of the projecte
spherical wave and thus for a given time. It is given by

cosw5
zp

R
5

zp

ct
. ~11!

Using the substitutions from Sec. I the Rayleigh
Sommerfeld integral can then be rewritten as

hs~r1 ,t !5
zp

2p
c~Q22Q1!E

t1

t2 d~ t2t8!

ct8
dt8. ~12!

Using the property of thed-function that

E
2`

1`

g~ t8!d~ t2t8!dt85g~ t ! ~13!

then gives

hs~r1 ,t !5
zp

ct

Q22Q1

2p
c5

zp

ct
h~r1 ,t !. ~14!

The spatial impulse response can, thus, be found from
spatial impulse response for the rigid baffle case by mu
plying with zp /(ct).

FIG. 6. Definition of bounding lines for polygon transducer. The arro
indicates the half-planes for the active aperture.
3269Jo”rgen Arendt Jensen: Spatial impulse response in ultrasound
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IV. SOLUTION FOR POLYGONS

The boundary of any polygon can be defined by a se
bounding lines as shown in Fig. 6. The active aperture is t
defined as lying on one side of the line as indicated by
arrows, and a point on the aperture must be placed corre
in relation to all lines. The test whether a point is on t
aperture is thus to go through all lines and test whether
point lies in the active half space for the line, and stop if it
not. The point is inside the aperture, if it passes the test
all the lines.

The intersections are found from the individual interse
tions between the projected circle and the lines. They
determined from the equations for the projected spher
wave and the line:

r 25~x2x0!21~y2y0!2,

y5ax1y1 , ~15!

r 25~ct!22zp
2.

Here (x0 ,y0) is the center of the circle,a the slope of the
line, andy1 its intersect with they-axis. The intersections ar
given from the solutions to:

05~11a2!x21~2ay122x022y0a!x

1~y0
21y1

21x0
222y0y12r 2!

5Ax21Bx1C,
~16!

D5B224AC.

The angles are

Q5arctanS y2y0

x2x0
D . ~17!

Intersections between the line and the circle are only foun
D.0. A determinantD,0 indicates that the circle did no
intersect the line. If the line has infinite slope, the solution
found from the equation:

x5x1 ,
~18!

05y222y0y1y0
21~x12x0!22r 2

5A`y21B`y1C` ,

in which A` , B` , C` replacesA, B, C, respectively,
and the solutions are found fory rather thanx. Herex1 is the
line’s intersection with thex-axis.

The times for discontinuities in the spatial impulse r
sponse are given by the intersections of the lines that de
the aperture’s edges and by the minimum distance from
projected field point to the lines. The minimum distance
found from a line passing through the field point that is
thogonal to the bounding line. The intersection between
orthogonal line and the bounding line is:
3270 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999
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ayp1xp2ay1

a211
,

~19!
y5ax1y1 ,

where (xp ,yp ,zp) is the position of the field point. For an
infinite slope line the solution isx5x1 andy5yp . The cor-
responding time is:

t i5
A~x2xp!21~y2yp!21zp

2

c
. ~20!

The intersections of the lines are also found, and the co
sponding times are calculated by Eq.~20! and sorted in as-
cending order. They indicate the start and end time for
response and the time points for discontinuities in the
sponse.

V. SOLUTION FOR CIRCULAR SURFACES

The other basic shape for a transducer apart from r
angular shapes is the flat, round surface used for single
ment piston transducers and annular arrays. For these
intersections are determined by two circles as depicted
Fig. 7. HereO1 is the center of the aperture with radiusr a

FIG. 7. Geometry for determining intersections between circles. The
graph shows the geometry when the field point denoted byO2 is outside the
aperture, and the bottom graph when it is inside.
3270Jo”rgen Arendt Jensen: Spatial impulse response in ultrasound
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FIG. 8. Spatial impulse response calculated from a re
angular transducer of 435 mm. The top graph shows
the result from using traditional evaluation and the bo
tom graph is when using the new method with fo
bounding lines. The axial distance to the field point
10 mm and the response is calculated for lateral d
tances from 0 to 21 mm off-axis in steps of 1 mm.
. A
tiv

the

be
a is
and the projected spherical wave is centered atO2 with ra-
dius r b(t)5A(ct)22zp

2. The lengthha(t) is given by~Ref.
17, p. 66!

ha~ t !5
2Ap~ t !~p~ t !2a!~p~ t !2r a!~p~ t !2r b~ t !!

a
,

a5iO12O2i , ~21!

p~ t !5
a1r a1r b~ t !

2
.

In a coordinate system centered atO1 and anx-axis in the
O12O2 direction, the intersections are at

y5ha~ t !,
~22!

l 56Ar b
2~ t !2ha

2~ t !.

The sign forl depends on the position of the intersections
negative sign is used if the intersections are for nega
values ofx, and positive sign is used for positivex positions.
3271 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999
e

When the field point is outside the active aperture
spatial impulse response is

h~r1 ,t !5
uQ22Q1u

2p
c5

c

p
arctanS ha~ t !

l D ,

~23!
Q25arctanS ha~ t !

l D52Q1 .

It must be noted that a proper four-quadrant arctan should
used to give the correct response. An alternative formul
~Ref. 18, p. 19!

h~r1 ,t !5
c

2p
arcsin

3S 2Ap~ t !~p~ t !2a!~p~ t !2r a!~p~ t !2r b~ t !!

r b
2~ t ! D ,

5
c

2p
arcsinS aha~ t !

r b
2~ t ! D . ~24!

The start timets for the response is found from
3271Jo”rgen Arendt Jensen: Spatial impulse response in ultrasound
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r a1r b~ t !5iO12O2i ,
~25!

ts5
Ar b

2~ t !1zp
2

c
5

A~ iO12O2i2r a!21zp
2

c
,

and the response ends at the timete when

r b~ t !5r a1iO12O2i ,
~26!

te5
Ar b

2~ t !1zp
2

c
5

A~ iO12O2i1r a!21zp
2

c
.

When the field point is inside the aperture, the response

h~r1 ,t !5c for
Zp

c
<t<

A~r a2iO12O2i !21zp
2

c
;

~27!

FIG. 9. Bounding lines defining a complex aperture. The arrows indic
the half-plane for the active aperture.
3272 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999
thereafter the arc lying outside the aperture should be s
tracted, so that

h~r1 ,t !5
2p2uQ22Q1u

2p
c. ~28!

The response ends when

r b~ t !5r a1iO12O2i ,
~29!

te5
A~ iO12O2i1r a!21zp

2

c
.

The determination of which part of the arc that subtracts
adds to the response is determined by what the active a
ture is. One ring in an annular array can be defined as c
sisting of an active aperture outside a circle combined w
an active aperture inside a circle for defining the inner a
outer rim of the aperture. A circular aperture can also
combined with a line for defining the active area of a sp
aperture used for continuous wave probing.

VI. SOLUTION FOR PARAMETRIC SURFACES

For ellipses or other higher-order parametric surface
is in general not easy to find analytic solutions for the spa
impulse response. The procedure described can, howe
devise a simple solution to the problem, since the inters
tions between the projected spherical wave and the edg
the aperture uniquely determine the spatial impulse respo
It is therefore possible to use root finding for a set of~non-
linear! equations for finding these intersections. The probl
is to find when both the spherical wave and the aperture h
crossing contours in the plane of the aperture, i.e., when

~ct!22zp
22~x2xp!22~y2yp!250,

~30!
S~x,y!50,

in which S(x,y)50 defines the boundary of the apertur
The problem of numerically finding these roots is in gene
not easy, if a good initial guess on the position of the int

s

e
n

l-
o

FIG. 10. Spatial impulse respons
from the complex aperture defined i
Fig. 9. The axial distance to the field
point is 10 mm and the response is ca
culated for lateral distances from 0 t
21 mm off-axis in thex-direction.
3272Jo”rgen Arendt Jensen: Spatial impulse response in ultrasound
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FIG. 11. Spatial impulse respons
from a circular aperture calculated
with the new method. Graphs ar
shown without apodization of the ap
erture ~top! and with a Gaussian
apodization function~bottom!. The ra-
dius of the aperture is 5 mm and th
field is calculated 10 mm from the
transducer surface.
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sections is not found~Ref. 19, pp. 286–289!. Good initial
values are, however, found here, since the intersections m
lie on the projected circle and the intersections only mo
slightly from time point to time point. An efficient Newton–
Raphson algorithm can therefore be devised for finding
intersections, and the procedure detailed here can be ma
find the spatial impulse response for any flat transducer
ometry with an arbitrary apodization and both hard and s
baffle mounting.

VII. EXAMPLES

The first example shows a comparison between the
ditional method for calculating spatial impulse responses
the new method. The response from a 435 mm rectangle is
found for different spatial positions 10 mm from the fro
face of the transducer. The responses are found from
3273 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999
ust
e

e
to

e-
ft

a-
d

he

center of the rectangle and out in steps of 1 mm in
x-direction to 21 mm away from the center of the rectang
The results are shown in Fig. 8. It is seen that the two me
ods give identical results.

The second example is for a more complicated apert
where its bounding lines are shown in Fig. 9. The calcula
spatial impulse response is shown in Fig. 10. Responses
been calculated from the center position forx50 mm, y
50 mm to the positionx514 mm, y50 mm in increments
of 1 mm. The distance to the transducer surface was alw
10 mm~5z!. A complicated response with a number of di
continuities is seen due to the many edges of the apertu

The last example shows the response from a circular,
transducer calculated with the new method. Two differe
cases are shown in Fig. 11. The top graph shows the tr
3273Jo”rgen Arendt Jensen: Spatial impulse response in ultrasound
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g,
tional spatial impulse response when no apodization is u
so that the aperture vibrates as a piston. The field is ca
lated 10 mm from the front face of the transducer starting
the center axis of the aperture. Twenty-one responses
lateral distance of 0–20 mm off-axis are then shown. T
same calculation is repeated in the bottom graph, whe
Gaussian apodization has been imposed on the aperture
vibration amplitude is a factor of 1/exp~4! less at the edges o
the aperture than at the center. It is seen how the apodiza
reduces some of the sharp discontinuities in the spatial
pulse response.

VIII. SUMMARY

The general theory for the calculation of spatial impu
responses for flat transducer apertures has been review
was shown that the response can be found from the inter
tions of the projected spherical wave with the edges of
aperture. This made it possible to derive a general proce
for calculating these responses, which can be used for
flat geometry. It was also shown that the calculation ea
can include hard and soft baffle mountings and the incor
ration of any apodization function over the aperture. T
approach makes it possible to make simulation programs
can handle arbitrary, flat, apodized aperture geometries w
out making approximations in the evaluation of the spa
impulse response for the hard baffle case.
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