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Calculation of Pressure Fields from Arbitrarily 
Shaped, Apodized, and Excited 

Ultrasound Transducers 
J ~ r g e n  Arendt Jensen and Niels Bruun Svendsen 

Abstract- A method for the simulation of pulsed pressure 
fields from arbitrarily shaped, apodized and excited ultrasound 
transducers is suggested. It relies on the Tupholme-Stepanishen 
method for calculating pulsed pressure fields, and can also handle 
the continuous wave and pulse-echo case. The field is calculated 
by dividing the surface into small rectangles and then summing 
their response. A fast calculation is obtained by using the far- 
field approximation. Examples of the accuracy of the approach 
and actual calculation times are given. 

T 
I .  INTRODUCTION 

HE MOST IMPORTANT component in acquiring high 
quality images for medical ultrasound scanners is the 

probing transducer. Ultimately it determines the quality of 
the data acquired, and thus the quality of the images and 
parameters displayed. Considerable effort has therefore been 
spend on designing transducers and characterizing the field 
emitted and received [l], [2]. 

Several methods for calculating the pressure field have been 
developed for assisting in the design and characterization of 
various transducer geometries. Most of the methods can be 
traced to the fundamental solutions of Rayleigh, King, and 
Schoch, of which a review can be found in [3].  

The most powerful approach seems to be the method 
developed by Tupholme and Stepanishen [4]-[6], which gives 
an exact solution for a transducer modeled as a planar piston 
vibrating uniformly in an infinite rigid, planar baffle. Analytic 
expressions for several transducer types have been found [ 5 ] ,  
[7], but closed form solutions can not be found for all types. 
Especially the introduction of exotic geometries or apodization 
of the transducer surface leads to analytically unsolvable 
integrals. 

In this paper we will develop a simulation approach based 
on the Tupholme-Stepanishen approach, which can simulate 
transducers with any apodization of the transducer surface and 
with any excitation of the transducer. 
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The paper proceeds along the following lines. Section I1 for- 
mulates the problem and details the underlying theory. Section 
111 gives various implementation details and Section IV lists 
a number of examples for different transducer geometries and 
apodization functions. It will be shown that the method is fast 
and gives accurate answers. 

11. THEORY 

The purpose of this paper is to devise a fast and accu- 
rate method for calculating the pulsed pressure field emitted 
from an arbitrarily shaped, apodized, and excited ultrasound 
transducer. 

It is assumed that the transducer is mounted in an infinite, 
rigid baffle. Enforcing appropriate boundary conditions, the 
emitted field can be found by solving the wave equation for 
the velocity potential 4) [4], [ 5 ] :  

from which the pressure is calculated as: 

where p0 is the mean density of the media, CO is the propaga- 
tion velocity. and p1 is the over pressure. 

The coordinate system shown in Fig. 1 is used in the 
calculation. The particle velocity normal to the transducer 
surface is denoted by ,[)(F2 + $3. t ) .  The solution to the 
homogeneous wave equation using Greens function is [S]: 

where S denotes the transducer surface. g is the time-dependent 
Green’s function and is 
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Transducer 

Fig. 1. Coordinate system for calculating the incident field 

the point of interest under the assumption of radiation into an 
isotropic, homogeneous, nondissipative medium. 

If a slightly curved transducer is used, an additional term 
is introduced as shown in Morse and Feshbach [S]. This term 
is called the second order diffraction term in Penttinen and 
Luukkala [7]. It can be shown to vanish for a planar transducer, 
and as long as the transducer is only slightly curved and large 
compared to the wavelength of the ultrasound, the resulting 
expression is a good approximation to the pressure field [7]. 

If  it  is assumed that surface vibration accounting for the 
excitation function and electromechanical impulse response 
can be split into a spatial component a(T; +Tfj) and a temporal 
component U, ( f 2  ) then: 

where a(,?) is denoted the spatial source velocity distribution 
[ 101. This implies that the vibration amplitude at a certain point 
on the surface does not depend on time, so the amplitude of 
vibration is not influenced by the shape of the excitation. 

The function 

hcL(F1.Fz>t- tz)  = n(Fz+F3)g(T;.t I F'2+F3,t2)dzF3 (6) L 
is called the apodized spatial impulse response and it relates 
the transducer geometry to the acoustical field. By this function 
we can write 

$(F1 ,?5> t )  = l J E ( t )  *ha ( r ; :F2 , t t )  (7) t 

where ~ ~ ( t )  is the piston velocity waveform, and the velocity 
potential is written as a convolution in time between this and 
the apodized spatial impulse response. 

If the particle velocity is assumed to be uniform over the 
surface of the transducer, (5) can be reduced to [6]: 

dj(71.,72.t) = l t w e ( t 2 ) L g ( F 1 , t  I F2+?3,tz)d2F3 dt2 (8) 

where the last integral equals the traditional spatial impulse 
response. 

Note that 11, depends on the difference between 71 and ?2, 

thus it is spatially varying. To emphasize this h, is written 
ha(?l, f 2 >  t ) .  

The sound pressure for the incident field then is 

or 

Note here the separation between the excitation and the 
transducer geometry. The 7 l e ( t )  includes the electromechanical 
impulse response of the transducer [ 2 ] .  

Explicit solutions for a number of transducer geometries 
have been found. Analytical expressions for the circular, flat 
transducer can be found in [ 5 ] ,  and for the circular, concave 
geometry in [7], [9]. 

It must be emphasized that only two approximations are 
used here. The first is the assumption of a large and slightly 
curved transducer, and the second assumption is that of sepa- 
rability between excitation and transducer geometry. Trans- 
ducers can be constructed in which this is a very good 
approximation, so that the pressure field calculated by this 
method is in good agreement with the measured field. 

The geometric features of the transducer are contained in the 
apodized spatial impulse response h,(T;, Fz, t )  and from this 
the field for any excitation function, including the continuous 
wave case, can be calculated. Further, it has been shown that 
the pulse echo field received by the emitting transducer can 
be calculated by [ l l ] :  

where vPe is the pulse-echo electromechanical impulse re- 
sponse including the excitation function. So the emitted pulsed 
field, the received field, and the continuous wave case can 
be derived from the apodized spatial impulse response as the 
electromechanical impulse response usually can be determined 
from a simple measurement. 

Thus, the original problem is transformed into calculating 
the apodized spatial impulse response. Closed form solutions 
have been found for some cases as mentioned previously, but 
not for all geometries and rarely when apodization is used. 

A. Simulation Method 
In analytic calculations the solution is found by evaluating 

which part of a sphere with center at the field point that 
intersects the transducer surface [9]. The area of the strip on the 
radiator surface divided by the distance to the field point gives 
the spatial impulse response at that time instance in the case 
of uniform vibration. When apodization is used, the different 
areas on the strip should be suitably weighted. 

In this simulation method the problem is reversed. A spher- 
ical wave is emitted from a point on the aperture and all 
spherical waves are summed at the field point. weighted by 
the inverse of the distance from the aperture point to the 
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field point. The apodized spatial impulse response is then 
approximated by 

where r ,  denotes the points on the transducer surface. 
Just dividing the surface into points has the drawback 

that quite a large number of points must be used as the 
variance of h, at a time instance depends on the number of 
spherical waves received in one time interval. The number 
of points can be drastically reduced by dividing the surface 
into small rectangles and then summing the responses from 
these rectangles. This is the approach used here. A similar 
approach has also been studied by Ocheltree and Frizzel for 
the continuous wave case [12]. Here we are studying the pulsed 
field case in which the continuous wave case can be calculated 
as a special case. 

Dividing the transducer surface into squares introduces an 
approximation to the true geometry, and the field will deviate 
from the true one. The problem is reduced by using small 
squares, where the distance to the field point is large compared 
to the size of the squares. Thus, it is appropriate to use a far- 
field approximation, when calculating the contribution from 
each individual element. The exact solution for the impulse 
response from a rectangular piston is derived in [6]  so only 
an intuitive explanation for the far-field solution is given here. 
As the impulse response at a point in front of a piston is 
proportional to how large part of the piston that contributes 
to the response at a given time, the problem of deriving the 
response is reduced to geometric considerations concerning 
the distance between the field point and the different parts 
of the transducer. From a point near the piston surface the 
isodistance curves looks like shown in Fig. 2(a), but if the 
distance increases the curves tends to straight lines, which is 
shown in Fig 2(b). The first is the near-field situation and the 
latter is the far-field situation. 

To calculate the far-field response from the rectangle a 
description of the piston and the location of the field point 
as shown in Fig. 3 is needed. The piston is described by its 
length and width and to fix the location of the field point, the 
piston is placed in a coordinate system in the XY-plane with 
the center at the origin. Then the location is defined by the field 
point’s position vector, split up into a unit vector (xe, ye, z,) 
and a distance, 1. 

In general the far-field spatial impulse response has the 
shape of a trapezoid as shown in Fig. 4, where t i  is the time- 
of-flight from the nearest corner of the piston to the field point. 
Likewise t 2  and t3 are the time-of-flight from the second and 
third nearest corner, and t l  is the time-of-flight from the corner 
with the largest distance to the field point. In special cases two 
or more of the t’s are equal. 

The trapezoid shape response can be calculated by con- 
volving two rectangular pulses. The width of these pulses are 
calculated by projecting the length and width of the piston 
onto the line through the rectangles center and the field point. 

(b) 

Fig. 2 .  Isodistance curves on the transducer surface. (a) Near-field. 
(b) Far-field. 

Y 

Fig. 3. Description of the piston and its orientation. 

Fig. 4. Far-field response 

Based on the mentioned description of the system we get 

where wy and W ,  are the side lengths of the rectangle. 
The arrival times are then calculated by 
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tJ = t l  + at, + atz. (14) 

The amplitude of the trapezoid is a function of piston area 
and distance to the field point. The shape depends on At1 and 
At,, but the area of the trapezoid integrated over the whole 
time interval is always equal to 

B. Arbitrarily Shaped Piston 

This quite simple result for the far-field response of a 
rectangular piston can be used when designing a fast numerical 
method for calculating the response of a piston of any shape. 
As for the point source representation the piston is split up 
into small squares (or rectangles), but instead of representing 
the small areas by point sources the far-field response from 
the rectangles is used. This makes it possible to use larger and 
therefore fewer squares to describe the piston. The resulting 
response is calculated by summing up the responses from 
all the squares. Apodizing is obtained by multiplying the 
individual responses by an apodizing factor, that could be 
a function of e.g. the radius of the transducer. In a similar 
manner a time delay can be added to the response, giving a 
different phase for different parts of the transducer, like in a 
phased array. 

C. Far-Field Region 

The size of the rectangles must be chosen so that. the field 
point lies in the far-field region. This is given by [ l ] :  

n 

w L  
I > > -  

4x 
where 1 is the distance to the field point, W the largest 
dimension of the rectangle and X the wavelength, which equals 
c o / f ,  where f is frequency. I f f  is the highest frequency in the 
response simulated, the side length should obey the relation 

(16) 

W << d w ~ .  (17) 

Examples indicating how close the side length can be chosen 
to this limit and what accuracy then is obtained, are given in 
Section IV. 

111. OVERVIEW OF PROGRAM 

The prime application of this program is to investigate fields 
from transducers of shapes with unknown analytic solutions 
and to study the influence of apodization and phasing of 
elements. It is very difficult to imagine the shape of these 
fields, and therefore whether correct results are calculated. In 
order to solve this problem, the program has been divided 
into two parts. The first calculates the position and orientation 
of the small rectangles describing the transducer, and the 
second performs the field calculation. The two parts are 
independent thereby enabling the possibility of thoroughly 
testing and calibrating the field calculation, which is transducer 
independent. The only uncertainty is then the placement of 
the rectangles. This part of the program can, however, be 
interfaced to a CAD program, that can visualize the placement 

Time Is] XIO-7 

Fig. 5.  Simulated (-) and true (- - -) spatial impulse response of con- 
cave transducer. The time on the y-axis is relative. Zero corresponds to 
t = ; ; .63pS.  

of the rectangles. By this method accurate and reliable results 
should be assured. 

IV. EXAMPLES 

In this section several examples of use of the program 
are shown. Responses are compared to analytic solutions 
and guidelines for choosing the number of elements and the 
resulting computing times are given. 

The first example is for a concave, nonapodized transducer 
with an aperture radius of 8 mm and a focal distance of 150 
mm. An analytic expression is found for this geometry [9] and 
can thus be compared to simulated responses. 

The spatial impulse response at a distance of 120 mm from 
the surface is shown in  Fig. 5 from on the acoustical axis and 
out in steps of 1 mm. The transducer was divided into 3177 
squares with a side length of 0.25 mm. Calculating the ten lines 
of the spatial impulse response at a sampling frequency of l00  
MHz took 1.5 S on an HP/Apollo 90001425t workstation', and 
is shown as dashed lines in Fig. 5 .  We see that the program 
quite accurately tracks the theoretical spatial impulse response 
off the acoustical axis. On the axis it is, however, more difficult 
to get the exact position and shape of the abrupt changes in 
the spatial impulse response due to the employment of the 
far-field approximation. 

In the next example the concave transducer was apodized 
with a Gaussian distribution function defined as 

a ( T )  = e-a;(f)l (18) 

where R is the radius of the aperture and 7' the distance from 
the center. ap  was chosen to be 2. The spatial impulse response 
is shown in Fig. 6. The characteristic elimination of sharp 
edges in the spatial impulse response is seen. 

To show that the pulse-echo response can be calculated 
to good accuracy a single example is shown in Fig. 7. The 
measured and simulated responses were obtained at a distance 

'This workstation has roughly the calculation speed of a 40-MHz 486 PC. 
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Fig. 6. Simulated spatial impulse response of Gaussian apodized con- 
'cave transducer. The time on the y-axis is relative. Zero corresponds to 
t = 7T.S3/tS.  

of 120 mm from the transducer surface. The measured pressure 
field was acquired by moving a needle in steps of 0.2 mm with 
an accuracy of 0.006 mm, measuring in a plane containing the 
acoustical axis of the transducer. Before the measurement, the 
transducer and the needle were aligned so that the needle was 
parallel to the acoustical axis. The data were sampled at a 
frequency of 100 MHz. The simulated field was calculated 
by measuring vp, as the response from a planar reflector, and 
then using (11) to calculate the field. The simulation was done 
with a element size of 0.25 mm, and the calculation took 12.1 
seconds. 

The envelope of the RF-signals is shown as a contour plot 
with 6 dB between the contours. The plots span 20 mm in 
the lateral direction and 4 ps in the axial direction. An other 
example at 60 mm from the transducer surface is shown in 
Fig. 8, indicating the good agreement between simulation and 
measurement. Further details and examples can be found in 

An important parameter to be selected is the element size, 
which essentially determines the accuracy of the result. The 
size should depend on the distance to the field, as this 
determines how well the far-field approximation is. In Table 
I the quantity (w2f/(41co)) is shown against the normalized 
mean square error (MSE) defined by 

P11. 

where N is the number of samples in the responses. 
The figures shown were calculated for the concave, non- 

apodized transducer mentioned previously at 120 mm from 
the surface and 10 mm off the acoustical axis at a sampling 
frequency of 100 MHz. Also shown in the table is the 
calculation time and calculation time multiplied by the number 
of Flops obtained in the Linpack benchmark and divided by the 
number of elements (NCT). All experiments were conducted 
on an HPiApollo 9000/425t with a Linpack rating of 1.8 Mflop. 
Using the last number in the table a rough estimate of the 
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Fig. 7. Measured and simulated pulse-echo response for a concave trans- 
ducer. Response at .r =l20 mm. The time on the !/-axis is relative. Zero 
corresponds to t = 77.S3ps. 

calculation time on other computers can be determined from: 

T =  NCT . Nsquares 
(20) Lin 

where NsquareS is the number of elements and L,,, the 
Linpack rating. So for the newer HPiApollo 730 workstation 
with a Linpack rating of 22 MFlops, it would take 0.11 S to 
calculate the response with 0.1-mm rectangles. 

V. CONCLUSION 

A method for the calculation of fields from arbitrarily- 
shaped and apodized transducers has been given. A calculation 
time in the order of a few seconds were obtained by splitting 
the transducer into small squares, and summing their far-field 
responses. 

Any excitation of the transducer can be handled and the 
continuous wave solution found by Fourier transforming the 
calculated responses. It was also shown how to obtain the 
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Fig. 8. Measured and simulated pulse-echo response for a concave trans- 
ducer. Response at .r=60 mm. The time on the y-axis is relative. Zero 
corresponds to t = 38.92ps. 

TABLE I 
TABLE OVER ACCURACY AND COMPUTATION 

TIME FOR DIFFERENT ELEMENT SIZES 

No. of Side U& MSEa Calculation N@ 
elements length 4 f , ”  % time (S) 

788 0.5 mm 0.0169 14.7 0.1 233.77 
3177 0.25 mm 0.0042 6.4 0.3 173.93 

20 046 0.1 mm 6.76.10-4 3.5 1.4 128.64 

“MSE is mean square error (see text). 
‘NCT the normalized calculation time (see text). 

pulse-echo field, so all characteristics of the field can be found 
by this simulation method. 

The accuracy of the approach is on the order of 3 to 5 per- 
cent compared to the theoretical spatial impulse response (see 
(19)), when a reasonable number of elements is used ensuring 
short calculation times. During the work with the program, it 
was found that the main cause for the deviations to the true 
response, was the use of the far-field approximation rather than 

the geometric approximation of using squares. We therefore 
hope to improve the accuracy and still attain short calculation 
time by improving on this approximation in future work. 

ACKNOWLEDGMENT 

Klaus Bolding Rasmussen is thanked for his help during the 
development of the technique and its implementation. Dr. Ole 
Trier Andersen is thanked for valuable discussions during the 
preparation of the paper. 

REFERENCES 

G. S. Kino, Acoustic waves, Devices, imaging & una106 signul procesJ- 
ing. Englewood Cliffs, NJ: Prentice Hall, 1987. 
J .  W. Hunt. M. Arditi, and F. S. Foster, “Ultrasound transducers for 
pulse-echo medical imaging,” IEEE Trans. Biomed. Eng., vol. BME-30. 
no. 8, pp. 453481 ,  Aug. 1983 
G. R. Harris, “Review of transient field theory for a baffled planar 
piston,” J .  Acoust. Soc. Am., v01 70, pp. 1&20, 1981. 
G.  E. Tupholme, “Generation of acoustic pulses by baffled plane 
pistons,” Mathematika vol. 16, pp. 209-224, 1969. 
P. R. Stepanishen, “The time-dependent force and radiation impedance 
on a piston in a rigid infinite planar baffle,” J .  Acousr. Soc. .4m., vol. 
49, no. 3, pp. 841-849, 1971. 
-, “Transient radiation from pistons in a infinite planar baffle.” .1. 
Acoust. Soc. Am. vol. 49, pp. 1627-1638, 1971. 
A. Penttinen and M. Luukkala, “The impulse response and pressure 
nearfield of a curved ultrasonic radiator,” J. P h y ~ .  D., vol. 9, pp. 
1547-1557, 1976. 
P. M .  Morse and H. Feshbach, Methods of Theoreticul Physics, Port I. 
New York: McGraw-Hill. 1953. 
M. Arditi, F. S .  Forster and J. Hunt, “Transient fields of concave annular 
arrays,” L’ltrason. Imaging, vol. 3, pp. 37-61, 1981. 
G. R.  Harris, “Transient field of a baffled planar piston having an 
arbitrary vibration amplitude distribution,” J .  Acousr. Soc. Am., vol. 70, 
pp, 186-204, 1981. 
J. A. Jensen, “A model for the propagation and scattering of ultrasound 
in tissue,”J. Acoust. Soc. Am., vol. 89, no. 1, pp. 182-191, 1991. 
K. B. Ocheltree and L. A. Frizzel, “Sound field calculation for rectan- 
gular sources,” IEEE Trans. Ultrason., Ferroeiec., Freq. Contr., vol. 36. 
no. 2, pp. 242-248, Mar. 1989. 

Jfirgen Arendt Jensen was born in  Roskilde, Den- 
mark, in 1960. He received the MSc. degree in 
electrical engineering in 1985 from the Technical 
University of Denmark. He received the Ph.D. de- 
gree in 1989 from the Technical University. The 
subject of his Ph.D. was digital signal processing of 
medical ultrasound images. 

He is a Visiting Scientist at the Department of 
Biomedical Engineering, Duke University, Durham, 
NC. He currently holds a postdoctoral fellowship at 
the Technical University and has published a num- 

ber of reports and papers on digital signal processing, ultrasound acoustics, 
and medical ultrasound imaging. 

he is engaged in the del 

Niels Brnun Svendsen was born in Copenhagen, 
Denmark, in 1962. He received the BSc. degree in 
electrical engineering in 1986 from the Engineering 
Academy of Denmark. 

He has been with the Danish Acoustical Institute 
since 1986 as a Staff Scientist, where he has worked 
with computer algorithms in the fields of sound 
propagation, siren coverage planning, and noise and 
vibration analysis. In 1987 he carried out a study 
on coherent Doppler simulation at TNO Institute of 
Applied Physics, Delft, The Netherlands. Currently, 

/elopment of a noise analysis system. 


