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Chapter 1

Ultrasound imaging and its modeling

Modern medical ultrasound scanners are used for imaging nearly all soft tissue structures in the
body. The anatomy can be studied from gray-scale B-mode images, where the reflectivity and
scattering strength of the tissues are displayed. The imaging is performed in real time with 20
to 100 images per second. The technique is widely used, since it does not use ionizing radiation
and is safe and painless for the patient.

This chapter gives a short introduction to modern ultrasound imaging using array transducers.
It includes a description of the different imaging methods, the beamforming strategies used, and
the resulting fields and their modeling.

1.1 Fundamental ultrasound imaging

The main units of a modern B-mode imaging system is shown in Fig. 1.1. A multi-element
transducer is used for both transmitting and receiving the pulsed ultrasound field. The central
frequency of the transducer can be from 2 to 15 MHz depending on the use. Often advanced
composite materials are used in the transducer, and they can attain a relative bandwidth in excess
of 100 %. The resolution is, thus, on the order of one to three wavelengths. The mean speed of
sound in the tissue investigated varies from 1446 m/s (fat) to 1566 m/s (spleen) [1, 2], and an
averaged value of 1540 m/s is used in the scanners. This gives an wavelength of 0.308 mm and
a resolution in the axial direction of 0.3 to 1 mm.

The emission of the beam is controlled electronically as described in Section 1.3, and is for a
phased array system swept over the region of interest in a polar scan. A single focus can be used
in transmit, and the user can select the depth of the focus. The reflected and scattered field is then
received by the transducer again and amplified by the time gain compensation amplifier. This
compensates for the loss in amplitude due to the attenuation experienced during propagation
of the sound field in the tissue. Typical attenuation values are shown in Table 1.1. A typical
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value used, when designing the scanner, is 0.7 dB/[MHz·cm], indicating that the attenuation
increases exponentially with both depth and frequency. This is the one-way attenuation and a 5
MHz wave measured at a depth of 10 cm would, thus, be attenuated 70 dB.

After amplification the signals from all transducer elements are passed to the electronic beam-
former, that focuses the received beam. For low-end scanners this is done through analog delay
lines, whereas more modern high-end scanners employ digital signal processing on a sampled
version of the signal from all elements. Hereby a continuous focus can be attained giving a very
high resolution image. Often the beamformer can handle 64 to 192 transducer elements, and
this is the typical element count in modern scanners. There is a continuous effort to expand the
number of channels to improve image resolution and contrast.

The beamformed signal is envelope detected and stored in a memory bank. A scan conversion
is then performed to finally show the ultrasound image on a gray-level display in real time. The
images can cover an area of 15 by 15 cm, and a single pulse-echo line then takes2·0.15/1540=
195µs to acquire. Since an image consists of roughly 100 polar lines, this gives a frame rate of
51 images a second. Often smaller images are selected to increase the frame rate, especially for
blood velocity imaging [3].

A typical ultrasound image is shown in Fig. 1.2 for a fetus in the 13th week. The head, mouth,
legs and the spine is clearly identified in the image. It is also seen that the image has a grainy
appearance, and that there are no clear demarcations or reflection between the placenta and the
amniotic fluid surrounding the fetus. There are, thus, no distinct reflections from plane bound-
aries as they seldom exist in the body. It is the ultrasound field scattered by the constituents
of the tissue that is displayed in medical ultrasound, and the medical scanners are optimized to
display the scattered signal. The scattered field emanates from small changes in density, com-
pressibility, and absorption from the connective tissue, cells, and fibrous tissue. These structures
are much smaller than one wavelength of the ultrasound, and the resulting speckle pattern dis-
played does not directly reveal physical structure. It is rather the constructive and destructive
interference of scattered signals from all the small structures. So it is not possible to visual-
ize and diagnose microstructure, but the strength of the signal is an indication of pathology.
A strong signal from liver tissue, making a bright image, is,e.g., an indication of a fatty or
cirrhotic liver.

As the scattered wave emanates from numerous contributors, it is appropriate to characterize it
in statistical terms. The amplitude distribution follows a Gaussian distribution [4], and is, thus,
fully characterized by its mean and variance. The mean value is zero since the scattered signal
is generated by differences in the tissue from the mean acoustic properties.

Since the backscattered signal depends on the constructive and destructive interference of waves
from numerous small tissue structures, it is not meaningful to talk about the reflection strength
of the individual structures. Rather, it is the deviations from the mean density and speed of
sound within the tissue and the composition of the tissue that determine the strength of the
returned signal. The magnitude of the returned signal is, therefore, described in terms of the
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power of the scattered signal. Since the small structures re-radiate waves in all directions and the
scattering structures might be ordered in some direction, the returned power will, in general, be
dependent on the relative position between the ultrasound emitter and receiver. Such a medium
is called anisotropic, examples of which are muscle and kidney tissue. By comparison, liver
tissue is a fairly isotropic scattering medium, when its major vessels are excluded, and so is
blood.

1.2 Imaging with arrays

Basically there are three different kinds of images acquired by multi-element array transducers,
i.e. linear, convex, and phased as shown in Figures 1.3, 1.5, and 1.6. The linear array transducer
is shown in Fig. 1.3. It selects the region of investigation by firing a set of elements situated over
the region. The beam is moved over the imaging region by firing sets of contiguous elements.
Focusing in transmit is achieved by delaying the excitation of the individual elements, so an
initially concave beam shape is emitted, as shown in Fig. 1.4.

The beam can also be focused during reception by delaying and adding responses from the
different elements. A continuous focus or several focal zones can be maintained as explained in
Section 1.3. Only one focal zone is possible in transmit, but a composite image using a set of
foci from several transmissions can be made. Often 4 to 8 zones can be individually placed at
selected depths in modern scanners. The frame rate is then lowered by the number of transmit
foci.

The linear arrays acquire a rectangular image, and the arrays can be quite large to cover a
sufficient region of interest (ROI). A larger area can be scanned with a smaller array, if the
elements are placed on a convex surface as shown in Fig. 1.5. A sector scan is then obtained.
The method of focusing and beam sweeping during transmit and receive is the same as for the
linear array, and a substantial number of elements (often 128 or 256) is employed.

The convex and linear arrays are often too large to image the heart when probing between the
ribs. A small array size can be used and a large field of view attained by using a phased array
as shown in Fig. 1.6. All array elements are used here both during transmit and receive. The
direction of the beam is steered by electrically delaying the signals to or from the elements,
as shown in Fig. 1.4b. Images can be acquired through a small window and the beam rapidly
sweeped over the ROI. The rapid steering of the beam compared to mechanical transducers
is of especial importance in flow imaging [3]. This has made the phased array the choice for
cardiological investigations through the ribs.

More advanced arrays are even being introduced these years with the increase in number of
elements and digital beamforming. Especially elevation focusing (out of the imaging plane) is
important. A curved surface as shown in Fig. 1.7 is used for obtaining the elevation focusing
essential for an improved image quality. Electronic beamforming can also be used in the ele-
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vation direction by dividing the elements in the elevation direction. The elevation focusing in
receive can then be dynamically controlled fore.g. the array shown in Fig. 1.8.

1.3 Focusing

The essence of focusing an ultrasound beam is to align the pressure fields from all parts of
the aperture to arrive at the field point at the same time. This can be done through either a
physically curved aperture, through a lens in front of the aperture, or by the use of electronic
delays for multi-element arrays. All seek to align the arrival of the waves at a given point
through delaying or advancing the fields from the individual elements. The delay (positive or
negative) is determined using ray acoustics. The path length from the aperture to the point gives
the propagation time and this is adjusted relative to some reference point. The propagation time
ti from the center of the aperture element to the field point is

ti =
1
c

√
(xi−xf )2 +(yi−yf )2 +(zi−zf )2 (1.1)

where(xf ,yf ,zf ) is the position of the focal point,(xi ,yi ,zi) is the center for the physical ele-
ment numberi, andc is the speed of sound.

A point is selected on the whole aperture as a reference for the imaging process. The propaga-
tion time for this is

tc =
1
c

√
(xc−xf )2 +(yc−yf )2 +(zc−zf )2 (1.2)

where(xc,yc,zc) is the reference center point on the aperture. The delay to use on each element
of the array is then

∆ti =
1
c

(√
(xc−xf )2 +(yc−yf )2 +(zc−zf )2−

√
(xi−xf )2 +(yi−yf )2 +(zi−zf )2

)

(1.3)
Notice that there is no limit on the selection of the different points, and the beam can, thus, be
steered in a preferred direction.

The arguments here have been given for emission from an array, but they are equally valid dur-
ing reception of the ultrasound waves due to acoustic reciprocity. At reception it is also possible
to change the focus as a function of time and thereby obtain a dynamic tracking focus. This is
used by all modern ultrasound scanners, Beamformers based on analog technology makes it
possible to create several receive foci and the newer digital scanners change the focusing con-
tinuously for every depth in receive.

The focusing can, thus, be defined through time lines as:
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From time Focus at
0 x1,y1,z1

t1 x1,y1,z1

t2 x2,y2,z2
...

...

For each focal zone there is an associated focal point and the time from which this focus is used.
The arrival time from the field point to the physical transducer element is used for deciding
which focus is used. Another possibility is to set the focusing to be dynamic, so that the focus is
changed as a function of time and thereby depth. The focusing is then set as a direction defined
by two angles and a starting point on the aperture.

Section 1.4 shows that the side and grating lobes of the array can be reduced by employing
apodization of the elements. Again a fixed function can be used in transmit and a dynamic
function in receive defined by:

From time Apodize with
0 a1,1,a1,2, · · ·a1,Ne

t1 a1,1,a1,2, · · ·a1,Ne

t2 a2,1,a2,2, · · ·a2,Ne

t3 a3,1,a3,2, · · ·a3,Ne
...

...

Hereai, j is the amplitude scaling value multiplied onto elementj after time instanceti . Typi-
cally a Hamming or Gaussian shaped function is used for the apodization. In receive the width
of the function is often increased to compensate for attenuation effects and for keeping the point
spread function roughly constant. The F-number defined by

F =
D
L

(1.4)

whereL is the total width of the active aperture andD is the distance to the focus, is often
kept constant. More of the aperture is often used for larger depths and a compensation for the
attenuation is thereby partly made. An example of the use of dynamic apodization is given in
Section 1.7.

1.4 Ultrasound fields

This section derives a simple relation between the oscillation of the transducer surface and the
ultrasound field. It is shown that field in the far-field can be found by a simple one-dimensional
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Fourier transform of the one-dimensional aperture pattern. This might seem far from the actual
imaging situation in the near field using pulsed excitation, but the approach is very convenient
in introducing all the major concepts like main and side lobes, grating lobes, etc. It also very
clearly reveals information about the relation between aperture properties and field properties.

1.4.1 Derivation of Fourier relation

Consider a simple line source of lengthL as shown in Fig. 1.9 with a harmonic particle speed
of U0exp( jωt). HereU0 is the vibration amplitude andω is its angular frequency. The line
element of lengthdx generates an increment in pressure atr ′ of [5]

dp= j
ρ0ck
4πr ′

U0ap(x)ej(ωt−kr′)dx, (1.5)

whereρ0 is density,c is speed of sound,k = ω/c is the wavenumber, andap(x) is an amplitude
scaling of the individual parts of the aperture. In the far-field(r À L) the distance from the
radiator to the field points is (see Fig. 1.9):

r ′ = r−xsinθ (1.6)

The emitted pressure is found by integrating over all the small elements of the aperture

p(r,θ, t) = j
ρ0cU0k

4π

Z +∞

−∞
ap(x)

ej(ωt−kr′)

r ′
dx. (1.7)

Notice thatap(x) = 0 if |x| > L/2. Herer ′ can be replaced withr, if the extent of the array
is small compared to the distance to the field point(r À L). Using this approximation and
inserting (1.6) in (1.7) gives

p(r,θ, t) = j
ρ0cU0k

4πr

Z +∞

−∞
ap(x)ej(ωt−kr+kxsinθ)dx= j

ρ0cU0k
4πr

ej(ωt−kr)
Z +∞

−∞
ap(x)ejkxsinθdx,

(1.8)
sinceωt andkr are independent ofx. Hereby the pressure amplitude of the field for a given
frequency can be split into two factors:

Pax(r) =
ρ0cU0kL

4πr

H(θ) =
1
L

Z +∞

−∞
ap(x)ejkxsinθdx (1.9)

P(r,θ) = Pax(r)H(θ)

The first factorPax(r) characterizes how the field drops off in the axial direction as a factor of
distance, andH(θ) gives the variation of the field as a function of angle. The first term drops
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off with 1/r as for a simple point source andH(θ) is found from the aperture functionap(x). A
slight rearrangement gives1

H(θ) =
1
L

Z +∞

−∞
ap(x)ej2πx f sinθ

c dx=
1
L

Z +∞

−∞
ap(x)ej2πx f ′dx. (1.10)

This very closely resembles the standard Fourier integral given by

G( f ) =
Z +∞

−∞
g(t)e− j2πt f dt

g(t) =
Z +∞

−∞
G( f )ej2πt f d f (1.11)

There is, thus, a Fourier relation between the radial beam pattern and the aperture function,
and the normal Fourier relations can be used for understanding the beam patterns for typical
apertures.

1.4.2 Beam patterns

The first example is for a simple line source, where the aperture function is constant such that

ap(x) =
{

1 |x| ≤ L/2
0 else

(1.12)

The angular factor is then

H(θ) =
sin(πL f sinθ

c )

πL f sinθ
c

=
sin( k

2Lsinθ)
k
2Lsinθ

(1.13)

A plot of the sinc function is shown in Fig. 1.10. A single main lobe can be seen with a number
of side lobe peaks. The peaks fall off proportionally tok or f . The angle of the first zero in the
function is found at

sinθ =
c

L f
=

λ
L
. (1.14)

The angle is, thus, dependent on the frequency and the size of the array. A large array or a high
emitted frequency, therefore, gives a narrow main lobe.

The magnitude of the first sidelobe relative to the mainlobe is given by

H(arcsin( 3c
2L f ))

H(0)
= L

sin(3π/2)
3π/2

/L =
2
3π

(1.15)

1The term1/L is included to makeH(θ) a unit less number.
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The relative sidelobe level is, thus, independent of the size of the array and of the frequency,
and is solely determined by the aperture functionap(x) through the Fourier relation. The large
discontinuities ofap(x), thus, give rise to the high side lobe level, and they can be reduced by
selecting an aperture function that is smoother like a Hanning window or a Gaussian shape.

Modern ultrasound transducers consist of a number of elements each radiating ultrasound en-
ergy. Neglecting the phasing of the element (see Section 1.3) due to the far-field assumption,
the aperture function can be described by

ap(x) = aps(x)∗
N/2

∑
n=−N/2

δ(x−dxn), (1.16)

whereaps(x) is the aperture function or apodization for the individual elements,dx is the spacing
(pitch) between the centers of the individual elements, andN +1 is the number of elements in
the array. Using the Fourier relationship the angular beam pattern can be described by

Hp(θ) = Hps(θ)Hper(θ), (1.17)

where

N/2

∑
n=−N/2

δ(x−dxn)↔ Hper(θ) =
N/2

∑
n=−N/2

e− jndxksinθ =
N/2

∑
n=−N/2

e− j2π f sinθ
c ndx. (1.18)

Summing the geometric series gives

Hper(θ) =
sin

(
(N+1) k

2dxsinθ
)

sin
(

k
2dxsinθ

) , (1.19)

which is the Fourier transform of a series of delta functions. This function repeats itself with a
period that is a multiple of

π =
k
2

dxsinθ

sinθ =
2π
kdx

=
λ
dx

. (1.20)

This repetitive function gives rise to the grating lobes in the field. An example is shown in
Fig. 1.11. The grating lobes are due to the periodic nature of the array, and corresponds to
sampling of a continuous time signal. The grating lobes will be outside a±90 deg. imaging
area if

λ
dx

= 1

dx = λ (1.21)
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Often the beam is steered in a direction and in order to ensure that grating lobes do not appear
in the image, the spacing or pitch of the elements is selected to bedx = λ/2. This also includes
ample margin for the modern transducers that often have a very broad bandwidth.

An array beam can be steered in a direction by applying a time delay on the individual elements.
The difference in arrival time between elements for a given directionθ0 is

τ =
dxsinθ0

c
(1.22)

Steering in a directionθ0 can, therefore, be accomplished by using

sinθ0 =
cτ
dx

(1.23)

whereτ is the delay to apply to the signal on the element closest to the center of the array. A
delay of2τ is then applied on the second element and so forth. The beam pattern for the grating
lobe is then replaced by

Hper(θ) =
sin

(
(N+1) k

2dx

(
sinθ− cτ

dx

))

sin
(

k
2dx

(
sinθ− cτ

dx

)) . (1.24)

Notice that the delay is independent of frequency, since it is essentially only determined by the
speed of sound.

1.5 Spatial impulse responses

The description in the last section is strictly only valid for the far-field, continuous wave case,
whereas the fields employed in medical ultrasound are pulsed and in the near field. A more
accurate and general solution is, thus, needed, and this is developed in this section. The ap-
proach is based on the concept of spatial impulse responses developed by Tupholme [6] and
Stepanishen [7, 8].

1.5.1 Fields in linear acoustic systems

It is a well known fact in electrical engineering that a linear electrical system is fully character-
ized by its impulse response. Applying a delta function to the input of the circuit and measuring
its output characterizes the system. The outputy(t) to any kind of input signalx(t) is then given
by

y(t) = h(t)∗x(t) =
Z +∞

−∞
h(θ)x(t−θ)dθ, (1.25)
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whereh(t) is the impulse response of the linear system and∗ denotes time convolution. The
transfer function of the system is given by the Fourier transform of the impulse response and
characterizes the systems amplification of a time-harmonic input signal.

The same approach can be taken to characterize a linear acoustic system. The basic set-up
is shown in Fig. 1.12. The acoustic radiator (transducer) on the left is mounted in a infinite,
rigid baffle and its position is denoted by~r2. It radiates into a homogeneous medium with a
constant speed of soundc and densityρ0 throughout the medium. The point denoted by~r1

is where the acoustic pressure from the transducer is measured by a small point hydrophone.
A voltage excitation of the transducer with a delta function will give rise to a pressure field
that is measured by the hydrophone. The measured response is the acoustic impulse response
for this particular system with the given set-up. Moving the transducer or the hydrophone to
a new position will give a different response. Moving the hydrophone closer to the transducer
surface will often increase the signal2, and moving it away from the center axis of the transducer
will often diminish it. Thus, the impulse response depends on the relative position of both the
transmitter and receiver(~r2−~r1) and hence it is called a spatial impulse response.

A perception of the sound field for a fixed time instance can be obtained by employing Huygens’
principle in which every point on the radiating surface is the origin of an outgoing spherical
wave. This is illustrated in Fig. 1.13. Each of the outgoing spherical waves are given by

ps(~r1, t) = kp

δ
(

t− |~r2−~r1|
c

)

|~r2−~r1| = kp

δ
(

t− |r|
c

)

|r| (1.26)

where~r1 indicates the point in space,~r2 is the point on the transducer surface,kp is a constant,
andt is the time for the snapshot of the spatial distribution of the pressure. The spatial impulse
response is then found by observing the pressure waves at a fixed position in space over time
by having all the spherical waves pass the point of observation and summing them. Being on
the acoustical axis of the transducer gives a short response whereas an off-axis point yields a
longer impulse response as shown in Fig. 1.13.

1.5.2 Basic theory

In this section the exact expression for the spatial impulse response will more formally be
derived. The basic setup is shown in Fig. 1.14. The triangular shaped aperture is placed in an
infinite, rigid baffle on which the velocity normal to the plane is zero, except at the aperture.
The field point is denoted by~r1 and the aperture by~r2. The pressure field generated by the

2This is not always the case. It depends on the focusing of the transducer. Moving closer to the transducer but
away from its focus will decrease the signal.
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aperture is then found by the Rayleigh integral [9]

p(~r1, t) =
ρ0

2π

Z

S

∂vn(~r2, t− |~r1−~r2|
c )

∂t
|~r1−~r2 | dS, (1.27)

wherevn is the velocity normal to the transducer surface. The integral is a statement of Huy-
gens’ principle that the field is found by integrating the contributions from all the infinitesimally
small area elements that make up the aperture. This integral formulation assumes linearity and
propagation in a homogeneous medium without attenuation. Further, the radiating aperture
is assumed flat, so no re-radiation from scattering and reflection takes place. Exchanging the
integration and the partial derivative, the integral can be written as

p(~r1, t) =
ρ0

2π

∂
Z

S

vn(~r2, t− |~r1−~r2|
c )

|~r1−~r2 | dS

∂t
. (1.28)

It is convenient to introduce the velocity potentialψ that satisfies the equations [10]

~v(~r, t) = −∇ψ(~r, t)

p(~r, t) = ρ0
∂ψ(~r, t)

∂t
. (1.29)

Then only a scalar quantity need to be calculated and all field quantities can be derived from it.
The surface integral is then equal to the velocity potential:

ψ(~r1, t) =
Z

S

vn(~r2, t− |~r1−~r2|
c )

2π |~r1−~r2 | dS (1.30)

The excitation pulse can be separated from the transducer geometry by introducing a time con-
volution with a delta function as

ψ(~r1, t) =
Z

S

Z

T

vn(~r2, t2)δ(t− t2− |~r1−~r2|
c )

2π |~r1−~r2 | dt2dS, (1.31)

whereδ is the Dirac delta function.

Assume now that the surface velocity is uniform over the aperture making it independent of~r2,
then:

ψ(~r1, t) = vn(t)∗
Z

S

δ(t− |~r1−~r2|
c )

2π |~r1−~r2 | dS, (1.32)

where∗ denotes convolution in time. The integral in this equation

h(~r1, t) =
Z

S

δ(t− |~r1−~r2|
c )

2π |~r1−~r2 | dS (1.33)
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is called the spatial impulse response and characterizes the three-dimensional extent of the field
for a particular transducer geometry. Note that this is a function of the relative position between
the aperture and the field.

Using the spatial impulse response the pressure is written as

p(~r1, t) = ρ0
∂vn(t)

∂t
∗h(~r1, t) (1.34)

which equals the emitted pulsed pressure for any kind of surface vibrationvn(t). The continuous
wave field can be found from the Fourier transform of (1.34). The received response for a
collection of scatterers can also be found from the spatial impulse response [11], [12]. Thus,
the calculation of the spatial impulse response makes it possible to find all ultrasound fields of
interest.

1.5.3 Geometric considerations

The calculation of the spatial impulse response assumes linearity and any complex-shaped trans-
ducer can therefore be divided into smaller apertures and the response can be found by adding
the responses from the sub-apertures. The integral is, as mentioned before, a statement of Huy-
gens’ principle of summing contributions from all areas of the aperture.

An alternative interpretation is found by using the acoustic reciprocity theorem [5]. This states
that: ”If in an unchanging environment the locations of a small source and a small receiver are
interchanged, the received signal will remain the same.” Thus, the source and receiver can be
interchanged. Emitting a spherical wave from the field point and finding the wave’s intersection
with the aperture also yields the spatial impulse response. The situation is depicted in Fig. 1.15,
where an outgoing spherical wave is emitted from the origin of the coordinate system. The
dashed curves indicate the circles from the projected spherical wave.

The calculation of the impulse response is then facilitated by projecting the field point onto the
plane of the aperture. The task is thereby reduced to a two-dimensional problem and the field
point is given as a(x,y) coordinate set and a heightz above the plane. The three-dimensional
spherical waves are then reduced to circles in thex− y plane with the origin at the position of
the projected field point as shown in Fig. 1.16.

The spatial impulse response is, thus, determined by the relative length of the part of the arc
that intersects the aperture. Thereby it is the crossing of the projected spherical waves with
the edges of the aperture that determines the spatial impulse responses. This fact is used for
deriving equations for the spatial impulse responses in the next section.
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1.5.4 Calculation of spatial impulse responses

The spatial impulse response is found from the Rayleigh integral derived earlier

h(~r1, t) =
Z

S

δ(t− |~r1−~r2|
c )

2π |~r1−~r2 | dS (1.35)

The task is to project the field point onto the plane coinciding with the aperture, and then find
the intersection of the projected spherical wave (the circle) with the active aperture as shown in
Fig. 1.16.

Rewriting the integral into polar coordinates gives:

h(~r1, t) =
Z Θ2

Θ1

Z d2

d1

δ(t− R
c )

2πR
r dr dΘ (1.36)

wherer is the radius of the projected circle andR is the distance from the field point to the
aperture given byR2 = r2 + z2

p. Herezp is the field point height above thex− y plane of the
aperture. The projected distancesd1,d2 are determined by the aperture and are the distance
closest to and furthest away from the aperture, andΘ1,Θ2 are the corresponding angles for a
given time (see Fig. 1.17).

Introducing the substitution2RdR= 2rdr gives

h(~r1, t) =
1
2π

Z Θ2

Θ1

Z R2

R1

δ(t− R
c
)dR dΘ (1.37)

The variablesR1 andR2 denote the edges closest to and furthest away from the field point.
Finally using the substitutiont ′ = R/c gives

h(~r1, t) =
c

2π

Z Θ2

Θ1

Z t2

t1
δ(t− t ′)dt′dΘ (1.38)

For a given time instance the contribution along the arc is constant and the integral gives

h(~r1, t) =
Θ2−Θ1

2π
c (1.39)

when assuming the circle arc is only intersected once by the aperture. The anglesΘ1 andΘ2 are
determined by the intersection of the aperture and the projected spherical wave, and the spatial
impulse response is, thus, solely determined by these intersections, when no apodization of the
aperture is used. The response can therefore be evaluated by keeping track of the intersections
as a function of time.
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1.5.5 Examples of spatial impulse responses

The first example shows the spatial impulse responses from a3×5 mm rectangular element for
different spatial positions 5 mm from the front face of the transducer. The responses are found
from the center of the rectangle(y= 0) and out in steps of 2 mm in thex direction to 6 mm away
from the center of the rectangle. A schematic diagram of the situation is shown in Fig. 1.18 for
the on-axis response. The impulse response is zero before the first spherical wave reaches the
aperture. Then the response stays constant at a value ofc. The first edge of the aperture is
met, and the response drops of. The decrease with time is increased, when the next edge of the
aperture is reached and the response becomes zero when the projected spherical waves all are
outside the area of the aperture.

A plot of the results for the different lateral field positions is shown in Fig. 1.19. It can be seen
how the spatial impulse response changes as a function of relative position to the aperture.

The second example shows the response from a circular, flat transducer. Two different cases
are shown in Fig. 1.20. The top graph shows the traditional spatial impulse response when
no apodization is used, so that the aperture vibrates as a piston. The field is calculated 10 mm
from the front face of the transducer starting at the center axis of the aperture. Twenty-one
responses for lateral distance of 0 to 20 mm off axis are then shown. The same calculation is
repeated in the bottom graph, when a Gaussian apodization has been imposed on the aperture.
The vibration amplitude is a factor of1/exp(4) less at the edges of the aperture than at the
center. It is seen how the apodization reduces some of the sharp discontinuities in the spatial
impulse response, which can reduce the sidelobes of the field.

1.5.6 Pulse-echo fields

The scattered field and received signal by the transducer can also be described using the spatial
impulse response. The received signal from the transducer is [12]:

pr(~r, t) = vpe(t) ?
t

fm(~r) ?
r

hpe(~r, t) (1.40)

where ?
r denotes spatial convolution and?t denotes temporal convolution.vpe is the pulse-

echo impulse, which includes the transducer excitation and the electro-mechanical impulse re-
sponse during emission and reception of the pulse.fm accounts for the inhomogeneities in the
tissue due to density and speed of sound perturbations, which give rise to the scattered signal.
hpe is the pulse-echo spatial impulse response that relates the transducer geometry to the spatial
extent of the scattered field. Explicitly written out these terms are:

vpe(t) =
ρ

2c2Em(t) ?
t

∂3v(t)
∂t3 , fm(~r1) =

∆ρ(~r)
ρ

− 2∆c(~r)
c

, hpe(~r, t) = ht(~r, t)∗hr(~r, t)

(1.41)
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Here∆ρ are the perturbations in density and∆c in speed of sound, andht(~r, t) andhr(~r, t) are
the spatial impulse responses for the transmitting and receiving apertures, respectively.Em(t)
is the electro-mechanical impulse response of the transducer during reception. So the received
response can be calculated by finding the spatial impulse response for the transmitting and
receiving transducer and then convolving with the impulse response of the transducer. A single
RF line in an image can be calculated by summing the response from a collection of scatterers
in which the scattering strength is determined by the density and speed of sound perturbations
in the tissue. Homogeneous tissue can thus be made from a collection of randomly placed
scatterers with a scattering strength with a Gaussian distribution, where the variance of the
distribution is determined by the backscattering cross-section of the particular tissue.

1.6 Fields from array transducers

Most modern scanners use arrays for generating and receiving the ultrasound fields. These
fields are quite simple to calculate, when the spatial impulse response for a single element is
known. This is the approach used in the Field II program [13], and this section will extend the
spatial impulse response to multi-element transducers and will elaborate on some of the features
derived for the fields in Section 1.4.

Since the ultrasound propagation is assumed to be linear, the individual spatial impulse re-
sponses can simply be added. Ifhe(~rp, t) denotes the spatial impulse response for the element
at position~r i and the field point~rp, then the spatial impulse response for the array is

ha(~rp, t) =
N−1

∑
i=0

he(~r i ,~rp, t), (1.42)

assuming allN elements to be identical.

Let us assume that the elements are very small and the field point is far away from the array, so
he is a Dirac function. Then

ha(~rp, t) =
k

Rp

N−1

∑
i=0

δ(t− |~r i−~rp|
c

) (1.43)

whenRp = |~ra−~rp|, k is a constant of proportionality, and~ra is the position of the array. Thus,
ha is a train of Dirac pulses. If the spacing between the elements isdx, then

ha(~rp, t) =
k

Rp

N−1

∑
i=0

δ
(

t− |~ra + idx~re−~rp|
c

)
, (1.44)

where~re is a unit vector pointing in the direction along the elements. The geometry is shown in
Fig. 1.21.
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The difference in arrival time between elements far from the transducer is

∆t =
dxsinΘ

c
. (1.45)

The spatial impulse response is, thus, a series of Dirac pulses separated by∆t.

ha(~rp, t)≈ k
Rp

N−1

∑
i=0

δ
(

t− Rp

c
− i∆t

)
. (1.46)

The time between the Dirac pulses and the shape of the excitation determines whether signals
from individual elements add or cancel out. If the separation in arrival times corresponds to
exactly one or more periods of a sine wave, then they are in phase and add constructively. Thus,
peaks in the response are found for

n
1
f

=
dxsinΘ

c
. (1.47)

The main lobe is found forΘ = 0 and the next maximum in the response is found for

Θ = arcsin

(
c

f dx

)
= arcsin

(
λ
dx

)
. (1.48)

For a 3 MHz array with an element spacing of 1 mm, this amounts toΘ = 31◦, which will be
within the image plane. The received response is, thus, affected by scatterers positioned31◦ off
the image axis, and they will appear in the lines acquired as grating lobes. The first grating lobe
can be moved outside the image plane, if the elements are separated by less than a wavelength.
Usually, half a wavelength separation is desirable, as this gives some margin for a broad-band
pulse and beam steering.

The beam pattern as a function of angle for a particular frequency can be found by Fourier
transformingha

Ha( f ) =
k

Rp

N−1

∑
i=0

exp

(
− j2π f

(
Rp

c
+ i

dxsinΘ
c

))

= exp(− j2π f
Rp

c
)

k
Rp

N−1

∑
i=0

exp

(
− j2π f

dxsinΘ
c

)i

(1.49)

=
sin(π f dx sinΘ

c N)

sin(π f dx sinΘ
c )

exp(− jπ f (N−1)
dxsinΘ

c
)

k
Rp

exp(− j2π f
Rp

c
).

The termsexp(− j2π f Rp
c ) andexp(− jπ f (N−1)dx sinΘ

c ) are constant phase shifts and play no
role for the amplitude of the beam profile. Thus, the amplitude of the beam profile is

|Ha( f )|=
∣∣∣∣∣

k
Rp

sin(Nπdx
λ sinΘ)

sin(πdx
λ sinΘ)

∣∣∣∣∣ , (1.50)
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which is consistent with the previously derived result.

Several factors change the beam profile for real, pulsed arrays compared with the analysis given
here. First, the elements are not points, but rather are rectangular elements with an off-axis
spatial impulse response markedly different from a Dirac pulse. Therefore, the spatial impulse
responses of the individual elements will overlap and exact cancellation or addition will not
take place. Second, the excitation pulse is broad band, which again influences the sidelobes.
The influence of these factors is shown in a set of simulations in the next section.

1.7 Examples of ultrasound fields

The field examples are generated using computer phantoms and the Field II simulation program,
that is based on the spatial impulse approach [14, 13].

The first synthetic phantom consists of a number of point targets placed with a distance of 5
mm starting at 15 mm from the transducer surface. A linear sweep image of the points is then
made and the resulting image is compressed to show a 40 dB dynamic range. This phantom is
suited for showing the spatial variation of the point spread function for a particular transducer,
focusing, and apodization scheme.

Twelve examples using this phantom are shown in Fig. 1.22. The top graphs show imaging
without apodization and the bottom graphs show images when a Hanning window is used for
apodization in both transmit and receive. A 128 elements transducer with a nominal frequency
of 3 MHz was used. The element height was 5 mm, the width was a wavelength and the kerf
0.1 mm. The excitation of the transducer consisted of 2 periods of a 3 MHz sinusoid with a
Hanning weighting, and the impulse response of both the emit and receive aperture was also a
two cycle, Hanning weighted pulse. In the graphs A – C, 64 of the transducer elements were
used for imaging, and the scanning was done by translating the 64 active elements over the
aperture and focusing in the proper points. In graph D and E 128 elements were used and the
imaging was done solely by moving the focal points.

Graph A uses only a single focal point at 60 mm for both emission and reception. B also
uses reception focusing at every 20 mm starting from 30 mm. Graph C further adds emission
focusing at 10, 20, 40, and 80 mm. D applies the same focal zones as C, but uses 128 elements
in the active aperture.

The focusing scheme used for E and F applies a new receive profile for each 2 mm. For analog
beamformers this is a small zone size. For digital beamformers it is a large zone size. Digital
beamformer can be programmed for each sample and thus a ”continuous” beamtracking can
be obtained. In imaging systems focusing is used to obtain high detail resolution and high
contrast resolution preferably constant for all depths. This is not possible, so compromises
must be made. As an example figure F shows the result for multiple transmit zones and receive
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zones, like E, but now a restriction is put on the active aperture. The size of the aperture is
controlled to have a constant F-number (depth of focus in tissue divided by width of aperture),
4 for transmit and 2 for receive, by dynamic apodization. This gives a more homogeneous point
spread function throughout the full depth. Especially for the apodized version. Still it can be
seen that the composite transmit can be improved in order to avoid the increased width of the
point spread function at e.g. 40 and 60 mm.

The next phantom consists of a collection of point targets, five cyst regions, and five highly
scattering regions. This can be used for characterizing the contrast-lesion detection capabilities
of an imaging system. The scatterers in the phantom are generated by finding their random
position within a 60× 40× 15 mm cube, and then ascribe a Gaussian distributed amplitude to
the scatterers. If the scatterer resides within a cyst region, the amplitude is set to zero. Within
the highly scattering region the amplitude is multiplied by 10. The point targets has a fixed
amplitude of 100, compared to the standard deviation of the Gaussian distributions of 1. A
linear scan of the phantom was done with a 192 element transducer, using 64 active elements
with a Hanning apodization in transmit and receive. The element height was 5 mm, the width
was a wavelength and the kerf 0.05 mm. The pulses where the same as used for the point
phantom mentioned above. A single transmit focus was placed at 60 mm, and receive focusing
was done at 20 mm intervals from 30 mm from the transducer surface. The resulting image for
100,000 scatterers is shown in Fig. 1.23. A homogeneous speckle pattern is seen along with all
the features of the phantom.

1.8 Summary

Modern ultrasound scanners has attained a very high image quality through the use of digital
beamforming. The delays on the individual transducer elements and their relative weight or
apodization is changed continuously as a function of depth. This yields near perfect focused
images for all depths and has increased the contrast in the displayed image, thus, benefitting
the diagnostic value of ultrasonic imaging. The development of the focusing strategies is nearly
exclusively based on linear acoustics, and the high success of the approach attest to the validity
of using linear acoustics. It is, thus, appropriate to characterize the medical ultrasound systems
using linear acoustics. This chapter has developed a complete linear description of all the fields
encountered in medical ultrasound. The various imaging methods were described, and then the
concept of spatial impulse responses was developed. This could be used for describing both
emitted and pulse-echo fields for both pulse emission and continuous wave systems using linear
systems theory. Examples of the influence of digital beamforming and apodization were also
shown.
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Tables
Attenuation

Tissue dB/[MHz·cm]
Liver 0.6 – 0.9
Kidney 0.8 – 1.0
Spleen 0.5 – 1.0
Fat 1.0 – 2.0
Blood 0.17 – 0.24
Plasma 0.01
Bone 16.0 – 23.0

Table 1.1: Typical attenuation values for human tissue (assembled from the compilation in [15]).
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Figures

Figure 1.1: Real-time B-mode ultrasound imaging system.
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Figure 1.2: Ultrasound image of a 13th week fetus. The markers at the border of the image
indicate one centimeter.

Figure 1.3: Linear array transducer for obtaining a rectangular cross-sectional image.
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Figure 1.4: Electronic focusing and steering of an ultrasound beam.

Figure 1.5: Convex array transducer for obtaining a polar cross-sectional image.
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Figure 1.6: Phased array transducer for obtaining a polar cross-sectional image using a trans-
ducer with a small foot-print.
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Figure 1.7: Elevation focused convex array transducer for obtaining a rectangular cross-
sectional image, which is focused in the out-of-plane direction. The curvature in the elevation
direction is exaggerated in the figure for illustration purposes.
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Figure 1.8: Elevation focused convex array transducer with element division in the elevation
direction. The curvature in the elevation direction is exaggerated in the figure for illustration
purposes.

Figure 1.9: Geometry for line aperture.

28



−100 −80 −60 −40 −20 0 20 40 60 80 100
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

θ [deg]

H
(θ

) 
[m

]

Beam pattern as a function of angle for L = 10 λ

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
4

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k sin(θ) [rad/m]

H
(θ

) 
[m

]

Beam pattern as a function k ⋅ sin(θ) for L = 10 λ

Figure 1.10: Angular beam pattern for a line aperture with a uniform aperture function as a
function of angle (top) and as a function ofksin(θ) (bottom).
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Figure 1.11: Grating lobes for array transducer consisting of 8 point elements (top) and of 8
elements with a size of1.5λ (bottom). The pitch (or distance between the elements) is2λ.
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Figure 1.12: A linear acoustic system.

Figure 1.13: Illustration of Huygens’ principle for a fixed time instance. A spherical wave with
a radius of|~r|= ct is radiated from each point on the aperture.
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Figure 1.14: Position of transducer, field point, and coordinate system.
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Figure 1.15: Emission of a spherical wave from the field point and its intersection of the aper-
ture.
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Figure 1.16: Intersection of spherical waves from the field point by the aperture, when the field
point is projected onto the plane of the aperture.
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Figure 1.17: Definition of distances and angles in the aperture plan for evaluating the Rayleigh
integral.
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Figure 1.18: Schematic diagram of field from rectangular element.
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Figure 1.19: Spatial impulse response from a rectangular aperture of4×5 mm at for different
lateral positions.
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Figure 1.20: Spatial impulse response from a circular aperture. Graphs are shown without
apodization of the aperture (top) and with a Gaussian apodization function (bottom). The radius
of the aperture is 5 mm and the field is calculated 10 mm from the transducer surface.
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Figure 1.21: Geometry of linear array.
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Figure 1.22: Point target phantom imaged for different set-up of transmit and receive focusing
and apodization. See text for an explanation of the set-up.
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Figure 1.23: Computer phantom with point targets, cyst regions, and strongly reflecting regions.
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