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An inhomogeneous wave equation is derived describing propagation and scattering of 
ultrasound in an inhomogeneous medium. The scattering term is a function of density and 
propagation velocity perturbations. The integral solution to the wave equation is combined 
with a general description of the field from typical transducers used in clinical ultrasound to 
yield a model for the received pulse-echo pressure field. Analytic expressions are found in the 
literature for a number of transducers, and any transducer excitation can be incorporated into 
the model. An example is given for a concave, nonapodized transducer in which the predicted 
pressure field is compared to a measured field. 

PACS numbers: 43.35.Bf, 43.80.Qf 

INTRODUCTION 

Ultrasound is used with great success in the diagnosis of 
abnormalities in soft tissue structures in the human body. 
Cross-sectional pictures are made in real time with the B- 
mode scan technique by current scanners. A high picture 
quality is obtained by employing linear and phased array 
transducers, and by post-processing the envelope detected 
signal from the transducer. But the ultrasound pictures still 
lack contrast and resolution compared to x-ray and NMR 
(nuclear magnetic resonance) pictures. It does not seem 
possible to cure this deficiency with the current techniques 
based on analog electronics, and it therefore seems plausible 
that future scanners will use high-frequency sampling of the 
transducer signal in order to employ digital signal process- 
ing. 

Developing algorithms that take advantage of this sam- 
pling necessitates quantitative knowledge of the received 
pulse-echo pressure field. The object of this paper is'to devel- 
op such a model for the received pressure field. 

In medical ultrasound, a pulse is emitted into the body 
and is scattered and reflected by density and propagation 
velocity perturbations. The received field can be found by 
solving an appropriate wave equation. This has been done in 
a number of papers. 1.2 Gore and Leeman• considered a wave 
equation where the scattering term was a function of the 
adiabatic compressibility and the density. The transducer 
was modeled by an axial and lateral pulse that were separa- 
ble. Fatemi and Kak 2 used a wave equation where the scat- 
tering only originated from velocity fluctuations, and the 
transducer was restricted to be circularly symmetric and un- 
focused (flat). 

The scattering term for the wave equation used in this 
paper is a function of density and propagation velocity per- 
turbations, and the wave equation is equivalent to the one 
used by Gore and Leeman. • No restrictions are enforced on 
the transducer geometry or its excitation, and analytic ex; 
pressions for a number of geometries can be incorporated 
into the model. 

The model includes attenuation due to propagation and 
scattering, but not the dispersive attenuation observed for 

propagation in tissue. This can, however, be incorporated 
into the model as indicated in Sec. VI. 

The paper is organized as follows. The following section 
derives the wave equation and describes the different linear- 
ity assumptions made. Section II calculates the scattered 
field and Sec. III introduces the transducer model for calcu- 

lation of the incident field. Section IV combines the wave 

equation solution and the transducer model to give the final 
equation for the received pressure field. To indicate the pre- 
cision of the model, examples of predicted pressure fields 
compared to measured fields are given in Sec. V. The paper is 
concluded in Sec. VI. 

I. DERIVATION OF THE WAVE EQUATION 

In this section, we derive the wave equation. The section 
has been included in order to explain, in detail, the different 
linearity assumptions and approximations made. To obtain 
a solvable wave equation, some assumptions and approxima- 
tions must be made. The first one states that the instanta- 

neous acoustic pressure and density can be written as 

Pins (r,t) = P + Pl (r,t), ( 1 ) 

lOins (r,t) =p(r) +Pt (r,t), (2) 

in which P is the mean pressure of the medium and ,o is the 
density of the undisturbed medium. The pressure variation 
p• is caused by the ultrasound wave and is considered small 
compared to P. The density change caused by the wave isp•. 
Bothp• and p• are small quantities of first order. 

Our second assumption is that no heat conduction or 
conversion of ultrasound to thermal energy take place. Thus, 
the entropy is constant for the process, so the acoustic pres- 
sure find density satisfy the adiabatic equation: 3 

dPi"s ' c 2 dloi"• . (3) 
dt dt 

The equation contains total derivatives, as the relation is 
satisfied for a given particle of the tissue rather than at a 
given point in space. This is the Lagrange description of the 
motion. 4 For our purpose, the Euler description is more ap- 
propriate. Here, the coordinate system is fixed in space and 
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the equation describes the properties of whatever particle of 
fluid there is at a given point at a given time. Converting to a 
Euler description results in the following constitutive equa- 
tion: 3.4 

1 ap, ap, 
-- - -- + u.vp (4) 

c 2 o•t 

using the fact that Panalp do not depend on time and that p• 
is small compared to p. u is the particle velocity, V is the 
gradient operator, and ß symbolizes the scalar product. 

The pressure, density, and particle velocity must also 
satisfy the hydrodynamical equations: 3 

du 
Pi.s -- -- •?Pins, ( 5 ) 

dt 

15•/Oin s 
-- - V.(p•u), (6) 

•t 

which are the dynamic equation and the equation of continu- 
ity. Using ( 1 ) and (2) and discarding higher-order terms we 
can write 

tO = --Vpl, (7) 
& 

- - V.(pu). (8) 
8t 

Differentiating (8) with respect to t and inserting (7) gives 

•2t 

Differentiating (4) with respect to t gives 

I O2pl •5•2pl • .Vp, (10) 
and inserting (9) and (7) leads to 

C 2 • •t 
We now assume that the propagation velocity and the den- 
sity only vary slightly from their mean values, so that 

p(r) =Po + •p(r), 

c(r) = Co + Ae(r), (12) 

where Po • •P and c o • Ac. Then, 

Vpl 1 
(% + 1c) 2 

1 
- v(po + ap).vpl. (•3) 

(po + •) 

Igno•ng small quantities of second order and using the ap- 
proximation 

1/(1 + A) • 1 -- fi, (14) 

we get 

Neglecting the second-order term (Ap/p•))V(Ap).Vp,, we 
finally get the wave equation: 

Co 2 8t 2 Co 3 o9 t 2 Po 
(16) 

The two terms on the right side of the equation are the scat- 
tering terms that vanish for a homogeneous medium. The 
wave equation was derived in Chernov. 3 It has also been 
considered in Gore and Leeman • and Morse and Ingard 4 in 
a slightly different form, where the scattering terms were a 
function of the adiabatic compressibility tc and the density. 

II. CALCULATION OF THE SCATTERED FIELD 

Having derived a suitable wave equation, we now calcu- 
late the scattered field from a small inhomogeneity embed- 
ded in a homogeneous surrounding. The scene is depicted in 
Fig. 1. 

The inhomogeneity is identified by r, and enclosed in 
the volume V'. The scattered field is calculated at the point 
indicated by r2 by integrating all the spherical waves ema- 
nating from the scattering region V' using the time-depen- 
dent Green's function for unbounded space. Thus, the scat- 
tered field is: TM 

P•(r2,t)=• ;r [•o •7 [ A•ø (r:) ] '•7P• (rl ,tl ) 
_ 2Ac(r•) o•2pl (r•,q)] 3 8t 2 Co 

XG(r• ,t• Ir2,t)d6 d3rl, (17) 
where G is Green's function: 

6(t -- t• -- Ir2 -- r• I/co ) 
G(r• ,6 Jr2 ,t) = , (18) 

4•rlr2 - r, I 

d 3r• means integrating with respect to r, over the volume 
V', and T denotes integration over time. 

We denote by 

Homogeneous medium 

Inhomogeneity 
(,,(,•), 4,", )) 

FIG. 1. Coordinate system for calculating the scattered field. 
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œo.=lv[Ap(rl)].V 2Ac(r,) 0 2 Po Co • & 2' (19) 
the scattering operator. 

The pressure field inside the scattering region is 

Pl (r,t) =p,(r,t) +ps(r,t), (20) 

where p/ is the incident pressure field. As can be seen, the 
integral cannot be solved directly. To solve it, we apply the 
Born-Neumann expansion. s If Gi symbolizes the integral 
operator representing Green's function and the integration, 
and Fop the scattering operator, then the first-order Born 
approximation can be written as 

Pt, (r2,t) = GiFo,pi (r I ,t• ). (21) 
Here, Pt has been set to zero in (20). Inserting pt, in (20), 
and then in (17), we arrive at 

P•2 (r2 ,t) 

= G, Fop [p/(r• ,t I ) + G•Fopp• (r I ,t I ) ] 
= GiFoppi(r• ,t•) + (GiFop)2pi(rl ,tl ). (22) 

It is emphasized here that G• indicates an integral over r I 
and q, and not the pressure at point r I and time t I but over 
the volume of V' and time Tindicated by r I and t I . 

The general expression for the scattered field, then, is: 

ps (r2,t) = G•FopPi (r• ,tl ) 

+ (G/Fop)2pi(r I ,ti ) 

+ (G/Fop)3pi (rl ,l I ) 

+ (GiFop)4pi(rl,q) + '". (23) 
Terms involving (G•Fop) Np• (r I ,t! ), where N> 1, describe 
multiple scattering of order N. Usually the scattering from 
small obstacles is considered weak, so higher-order terms 
can be neglected. Thus, a useful approximation is to employ 
only the first term in the expansion. This corresponds to the 
first-order Born approximation. 

Using this, (17) can be approximated by 

P•(r2,t) • fv, fr (p•lo lr [ Ap(rl ) ]'VP/'(r1,tl ) 
2Ac(rt ) •ap•(rl ,q ).) 3 a9t 2 ½o 

X G(rl ,tl Ir• ,t)dtl d 3r•. (24) 
So, in order to calculate the scattered field, the incident field 
for the homogeneous medium must be calculated. 

Homogeneous medium 
r, - (6 + r,) 

FIG. 2. Coordinate system for calculating the incident field. 

V2p, 10EP__•L _ O. (25) 
c• a•2t 

The field is conveniently calculated by employing the veloc- 
ity potential •p(r,t), and enforcing appropriate boundary 
conditions. s'ø The velocity potential satisfies the following 
wave equation for the homogeneous medium: 

V2 • I •2•_0, (26) 
c• J2t 

and the pressure is c•culated from 

O•(r,t) 
p(r,t) =Po • (27) 

Ot 

The coordinate system shown in Fig. 2 is used in the calcula- 
tion. The pa•icle velocity normal to the transducer surface 
is denoted by v(r3 + r•,t). 

The solution to the homogeneous wave equation is 9 

•(ri + r 3,t) 

=• v(r•*r•,t,)g(r,,t[r 3 +rn,t,)dt3 d•r• (28) 
d• JT 

when the transducer is mounted in a rigid infinite planar 
ba•e. Here, S denotes the transducer su•ace. 

The Green's function for a bounded medium is g and is 

III. CALCULATION OF THE INCIDENT FIELD 

The incident field is generated by the ultrasound trans- 
ducer, assuming no other sources exist in the tissue. We want 
to calculate the field of a typical focused ultrasound trans- 
ducer generating a transient field. 

A review of different methods to calculate this can be 

found in Harrisfi '7 The most elegant, accurate, and straight- 
forward solution is to use the convolution method developed 
by Tupholme s and Stepanishenfi'lø 

By this method the incident field is found by solving the 
wave equation for the homogeneous case: 

g(r• ,t Ir3 q- r n,t 3 ) 
= 6(t -- t• -- - - r 4 I/co )?(2rrlrl -- - r 41). 

(29) 

The distance from $ to the point where the field is calculated 
is [r• -- r 3 -- rn[ and co is the mean propagation velocity. 
The field is calculated under the assumption of radiation into 
an isotropic, homogeneous, nondissipative medium. The in- 
tegral is a statement of Huygens' principle that, for a planar 
vibrating surface, each point on the source generates a 
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spherical wave, and the resulting field is found by integrating 
these waves at the point of interest. 

If a slightly curved transducer is used, an additional 
term is introduced, as shown in Morse and Feshbach. • 1 This 
term is called the second-order diffraction term in Penttinen 

and Luukkala. n It can be shown to vanish for a planar trans- 
ducer, and as long as the transducer is only slightly curved 
and large compared to the wavelength of the ultrasound, the 
resulting expression is a good approximation to the pressure 
field. 12 

If we assume the particle velocity to be uniform over the 
surface of the transducer, (28) can be reduced to Iø 

•(r,,r•,t) 

-- fTo(q) f?(r,,tlr• + r4,t3)d2r4 dt3. (30) 
The function 

h(r• ,r3,t - t• ) = fsg(r• ,t It3 q- r4,t 3 )d2r4 
= f 8(t -- t 3 -- [r, -- r3 -- r 4 I/co) d2 r 

(31) 

is called the spatial impulse response and it relates the trans- 
ducer geometry to the acoustical field. By this function, we 
can write 

•p(r• ,r3,t) = v(t) * h(r•,%,t). (32) 

The piston velocity waveform is v(t), and the velocity poten- 
tial is written as a convolution in time between this and the 

spatial impulse response. Note that h depends on the differ- 
ence between r• and r 3, thus it is spatially varying. To em- 
phasize this, h is written h(r• ,r•,t). 

The sound pressure for the incident field, then, is 

o•p(r • ,r3,t) 
p(r• ,rz,t) = Po 

•t 

Oh(r•,r3,t) 
=per(t) * (33) 

, o•t 

or 

o3J(t) ß h(r•,r3,t). (34) p(r I,r•,t) =Po a3t 
Note, the separation between the excitation and the trans- 
ducer geometry. Here, v(t) includes the electromechanical 
impulse response of the transducer.•3'14 

Explicit solutions for a number of transducer geeme: 
tries have been found. Analytical expressions for a circular, 
flat transducer can be found in Stepanishen, 9 and for a circu- 
lar, concave geometry in Penttinen and Luukkala. p 

It must be emphasized that the only approximation in- 
troduced here is the assumption of separability between the 
excitation and the transducer geometry. Transducers can be 
constructed in which this is a very good approximation, so 
that the pressure field calculated by this method is in good 
agreement with the measured field. 

IV. CALCULATION OF THE RECEIVED SIGNAL 

The received signal is the scattered pressure field inte- 
grated over the transducer surface, convolved with the elec- 
tromechanical impulse response Em (t) of the transducer. 
To calculate this, we introduce the coordinate system shown 
in Fig. 3. 

The term r 6 q- r s indicates a receiving element on the 
surface of the transducer that is located at rs. The received 
signal is 

p,(rs,t) =Em (t) *, fsP•(r 6 + r•,t)d2rt. (35) 
The scattered field is 

p,(r6 + rs,t) 

=-3;v.•rFop[p,'r,,t,)] 
•5(t-- t, -- It6 + rs -- r, I/co) dr, d•r•. x (36) 

2rrlr• + rs -- rl I 
Combining (36) with (35) and comparing with (31 ), we see 
that p, includes Green's function for bounded space inte- 
grated over the transducer surface, which is equal to the 
spatial impulse response. Inserting the expression forpl and 
performing the integration over the transducer surface and 
over time, results in 

f•, (pC•V(t)'h(r,,r• ,t)) p,(rs,t) =E,,(t) • « Fop 0 8t 

X * h (rs,r • ,t)d •r I . (37) 
t 

If the position of the transmitting and the receiving trans- 
ducer is the same (r3 = r• ), then a simple rearrangement of 
(37) yields 

Po E,. (t) * o•o(t) p,(r•,t)=•- , 8t *, 

X;},.Fop[Hp•(rl,r,,t)]d3r•, (38) 

Homogeneous medium 

neity 

FIG. 3. Coordinate system for calculating the received signal. 
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where 

H• (r I ,rs,t) = h(r I ,rs,t) * h(rs,r• ,t) (39) 
t 

is the pulse-echo spatial impulse response. 
The calculated signal is the response measured for one 

given position of the transducer. For a B-mode scan picture, 
a number of scan-lines are measured and combined to a pic- 
ture. To analyze this situation, the last factor in (38) is expli- 
citly written out as 

fv, (p•1o V[ Ap(rl ) ]'VHp• (r• ,rs, t) 
_ 2Ac(r•) 3 ZHp• (r x ,r• ,t).) d •r•. (40) cg at • 

From Sec. III, we know that Hv• is a function of the distance 
between r• and r•, while • and Ac only are functions ofr•. 
So, when r• is varied over the volume of inter•t, the result- 
ing image is a spatial nonstationary convolution between •, 
Ac, and a modified fo• of the pulse-echo spatial impulse 
response. 

If we assume that the pulse-echo spatial impulse is slow- 
ly varying so that the spatial frequency content is constant 
over a finite volume, then (40) can be rewritten as 

_ 2ac(r,• 8 :H• (r I ,rs,t) ] d 3r I . (41) cg 

Here, H• is a function of the distance between the trans- 
ducer and the scatterer, or equivalently, of the correspond- 
ing time given by 

t = Irl -- r• I/co. (42) 

The Laplace operator is the second derivative with respect to 
the distance, which in this case corresponds to the second 
derivative with respect to time. So, 

V2H• (r•,r•,t) = 1 82H• (r•,r•,t) (43) 
assuming only small deviations from the mean propagation 
velocity. 

Using these approximations, (38) can be rewritten as 

Pt (rs ,t) 

_Po E 8o(t)* fe (.•(r•) 2Ac(r• ).) --• •(t)• •t t 'X Po Co 
1 8 :H• (r•,r•,t) X d•r•. (•) 

Symbolically, this is w•tten as 

pr(rs,t) = o• (t) *f• (r•) * h• (r• ,rs,t). (45) 
t r 

Here, * denotes spatial convolution. The pulse-echo wavelet 
r 

is o•, which includes the transducer excitation and the elec- 
tromechanical impulse response during emission and recep- 
tion of the pulse. The te•f• accounts for the inhomogene- 
ities in the tissue due to density and propagation velocity 

perturbations that give rise to the scattered signal. The term 
h• is the modified pulse-echo spatial impulse response that 
relates the transducer geometry to the spatial extent of the 
scattered field. Explicitly written out, these terms are 

v•(t) =POE (t) * •v(t•) (46) 2 m t •t ' 

f,, (r,) ---- Ap(r, )/Po -- 2Ac(r, )/Co, (47) 

1 
h• (r• ,r s,t) = (48) 

co: o•t 2 
Expression (45) consists of three distinct terms. The inter- 
esting signal, and the one that should be displayed in medical 
ultrasound, is fro (r•). We, however, measure a time and spa- 
tially smoothed version of this, which obscures the finer de- 
tails in the picture. The smoothing consists of a convolution 
in time with a fixed wavelet v w (t) and a spatial convolution 
with a spatially varying h• (rl ,rs ,t). 

V. WAVE PROPAGATION EXPERIMENT 

This section compares the pressure field predicted by 
the model to a measured field to give an indication of the 
accuracy of the model for one scatterer embedded in a homo- 
geneous medium. The measurement describes how a point is 
depicted by the transducer. This is done by moving a small 
point through the image plane. In practice, a point cannot be 
made and the tip of a needle is used to imitate a small point 
with a change in density and propagation velocity. 

A. Measurement conditions 

To make a precise comparison between theory and ex- 
periments, a concave, nonapodized transducer was used, for 
which analytic expressions are known for the spatial impulse 
response. The transducer used was a Briiel & Kjaer type 
8529 with a nominal frequency of 3.5 MHz. The focal radius 
is 150 mm, and the radius of the element is 8.1 mm. 

The needle used had a radius of 0.3 mm and was made 

by removing the insulation from a copper wire. This should 
result in a smooth surface without spurious echoes from the 
needle surface so the scattered field only emanates from the 
tip of the needle. The needle then imitates a point in space. 
The needle was mounted on a fixture and was adjusted so 
that the needle was parallel to the acoustical axis of the trans- 
ducer. The measurement was performed in a water bath of 
850X430X500 mm (length, height, width). It contained 
distilled water that had been degassed for 24 h. 

A Briiel & Kjaer 1846 ultrasound scanner was used to 
generate and receive the pulse to and from the transducer. 
During the measurements, the time gain amplifier in the 
scanner was set to linear amplification. 

The high-frequency signal from the receiver amplifier 
was sampled by a LeCroy 9400 digital sampling oscillo- 
scope, that has a resolution of 8 bits and an aperture jitter of 
10 ps. The sampling frequency used was 100 MHz. The 3-dB 
bandwidth of the oscilloscope is 125 MHz. At full range, the 
signal-to-noise ratio is reported by the manufacturer to be 
43.5 dB at 10 MHz. 
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The scanner pulse emission was synchronized to the 
sampling frequency of the oscilloscope, making it possible to 
perform averaging on lines and to obtain coherency between 
lines at different positions. The synchronization also makes 
it possible to compare the measured and simulated lateral 
response. Each line shown is the average of ten measure- 
ments. This was done to reduce the measurement noise. The 

gain on the oscilloscope was set to the highest setting possi- 
ble without clipping for each line, so the dynamic range 
could be fully utilized. 

B. Simulation model 

The simulation is based on the derived solution for the 

received pressure field, Eq. (45). During the simulation, we 
assumef,• to be a Dirac impulse, corresponding to the needle 
used in the measurements, so (45) is reduced to 

p, (rs,t) = v• (t) *, h• (r• ,r•,t). (49) 
An analytic expression for h is given by Arditi et al. • for a 
concave, nonapodized transducer. 

To perform the calculations we must know vpe, as h can 
be calculated from our knowledge of the physical dimen- 
sions of the transducer. So, v• can either be constructed 
from knowledge of the electromechanical properties of the 
transducer or it can be measured. We choose the second 

approach here, as this gives the most accurate determination 
of v•. 

The response measured, when a pulse impinges on a 
planar reflector, is an amplitude-scaled replica of the origi- 
nal pulse, when the incident field is planar. The spatial im- 
pulse response at the focal point of a concave transducer is a 
Dirac impulse. Rewriting (49) we get 

(5O) 

0.4 

0.2 

Time (s] x10 '• 

FIG. 5. Noise-filtered pulse-echo wavelet. 

So, by placing a plane reflector at the focal point, we get the 
basic twice-differentiated pulse. This simple setup gives the 
pulse to be incorporated into the calculation of the field. 

The pulse for the Brfiel & Kjaer 8529 transducer was 
measured by placing a perspex plate 150 mm from the trans- 
ducer surface and then measuring the reflected pulse. The 
result is shown in Fig. 4. The measurement was performed 
by the LeCroy 9400 oscilloscope. The perspex plate was 10 
mm thick and measured 150 by 500 mm. 

To remove noise, the response is filtered in the frequen- 
cy domain by removing all components above 7 MHz, which 
results in the wavelet shown in Fig. 5. As seen, only the noise 
has been removed, thus this wavelet is used in the simulation. 

When calculating h, it must be taken into account that h 
has some abrupt changes, •.•6 so to ensure a precise simula- 
tion, the time steps must be small. A value of 625 ps corre- 
sponding to a 1.6-GHz sampling frequency proved to be ade- 
quate. 

o 

ß • -o.4 

Time [•] 

3 3.5 

FIG. 4. Measured pulse-echo wavelet for the Brfiel & Kjaer 8529 trans- 
ducer. 

C. Comparison between measured and simulated 
responses 

The measured and simulated responses in Figs. 6 and 7 
were obtained at a distance of 120 mm from the transducer 

surface. The measured pressure field was acquired by mov- 
ing the needle in steps of 0.2 mm with an accuracy of 0.006 
mm, and measuring in a plane containing the acoustical axis 
of the transducer. Before the measuring, the transducer and 
the needle were aligned so that the needle was parallel to the 
acoustical axis. The data were sampled at a frequency of 100 
MHz. 

In Figs. 6 and 7, plots of the obtained responses are 
shown. The envelope of the RF-signals is shown as a mesh 
plot from two angles. The plots span 20-mm in the lateral 
direction and 4 ps in the axial direction. A contour plot of 
the normalized logarithm of the envelope is also shown. The 
normalized rf signal is shown at the acoustical axis, and at 3 
mm from the acoustical axis. The normalized lateral re- 
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Kayelope of measured responte, z;120 mm. linear sck•e, 

-•0 

Ei1velop'e of simulated respenis, z•120 am, linear leila 

F, alwlope. of simulated raspease, x:120. am, Ilseta t•M8 ' 

Measured response, x=120 mm, O dB contour lines 

T J T 

6 G io 

Lateral distance [mm] 

4 

3.5 

3 

2.5 

l 

0.5 

0 

Simulated response, z=i20 mm, 6 dB contour lines 

} -24 dB 

, 

Lateral distance [ms] 

FIG. 6. Response at x = 120 mm. Amplitude envelope plots. 

sponse at the maximum positive peak of the response is also 
shown. The solid line is the measured response and the 
dashed line is the predicted response in Fig. 6. The left side of 
Fig. 7 shows the measured responses, the right side the simu- 
lated. A contour plot of the envelope measured and predict- 

ed at x = 60 mm is shown in Fig. 8 and at x = 200 mm in Fig. 
9. 

Comparing the measured and simulated responses, one 
sees that the model quite accurately predicts the measured 
responses. The main difference is the length of the responses, 
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o 0,6 

Time xlO=8 

x10 -s Measured response, x:60 mm, 6 dB contour lines 

L•ter&l dl.tmnce Imm] 

0.3 

-0.4 
I 1.6 2 2.5 

Time is] 

xlO -s Simulated response. x=60 mm. 6 dB contour lines 
4 

3.5 

0.5 

Lateral dimt•nee [mm] 

-o 

Measured and simulated lateral response at x=120 mm 

-10 -it -6 -4 -2 0 2 4 8 8 10 

L•teral distance [mm I 

FIG. 7. Response at x = 120 mm. Amplitude plots. 

FIG. 8. Response at x := 60 min. Amplitude envelope plots. 

This is due to the finite size of the needle, where in the simu- 
lation the scatterer was assumed to be a point. 

These deviations are, however, small compared to the 
overall capability of the model to predict the actual response 
down to a level of -- 30 to - 40 dB. So, in the case of no 
absorption and single scattering, the model derived is in 
good agreement with actual measurements. Further exam- 
ples of measurements and simulations can be found in Jen- 
sen. 16 They show the same pattern as the comparison given 
here. 

in which measured responses are consistently longer than 
predicted responses. This can possibly be ascribed to the 
shape of the needle, as there might have been some surface 
roughness or the tip had not been cut properly. It is also seen 
that the width of the responses differs from the predicted. 

VI. SUMMARY 

A wave equation for propagation of ultrasound in an 
inhomogeneous medium has been derived under the as- 
sumption of linear propagation and weak scattering. A gen- 
eral expression was derived for the received pressure field 
using the first-order Born approximation. The model can be 
used for a number of different transducer types and excita- 
tions. Analytic expressions for the spatial impulse response 

189 J. Acoust. Soc. Am., Vol. 89, No. 1, January 1991 J0rgen Arendt Jensen: Model for propagation in tissue 189 



xIO-4 •eaeurcd reaponce. z-200mm, 6 dB contour llne8 

Libril dl.t•ne. [ram] 

xtO -4 $1mulnted temponee, x=200 mm, e dB contour lines 

3 ! '. 36 dB 

0 

Lateral dlee,•noe [mm] 

FIG. 9. Response at x = 200 min. Amplitude envelope plots. 

for circular flat and concave, and rectangular transducers 
can readily be found in the literature. 

The derived expression consists of three terms. The first, 
f,, (r•) accounts for the density and propagation velocity 
perturbations in tissue. It is this parameter that should be 
displayed in medical ultrasound, but we observe a temporal- 
ly and spatially smoothed version of the perturbations. The 
temporal smoothing is due to Ups, which accounts for the 
excitation and the electromechanical transfer function of the 

transducer. The spatial smoothing is due to hp½, the modified 
pulse echo spatial impulse response resulting from the trans- 
ducer geometry. 

The model includes attenuation of the pulse due to prop- 
agation and scattering, but not the dispersive attenuation of 
the wave observed when propagating in tissue. This changes 
the pulse continuously as it propagates down through the 
tissue. Not including dispersive attenuation is, however, not 
a serious drawback of the theory, as this change of the pulse 
can be lumped into the already spatially varying hv•. Or, if in 
the far field and assuming a homogeneous, dispersive attenu- 
ation, then an attenuation transfer function can be con- 

volved onto v• to yield an attenuated pulse. Work is in prog- 
ress in order to evaluate the accuracy of this approach. 
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