
Users’ guide for the Field II program
Release 3.20, November 19, 2010

Jørgen Arendt Jensen

May 6, 2011

Jørgen Arendt Jensen
May 6, 2011

Department of Electrical Engineering, Build. 349,
Technical University of Denmark

DK-2800 Lyngby, Denmark
E-mail: jaj@elektro.dtu.dk

Web: http://server.elektro.dtu.dk/www/jaj/field/

http://server.elektro.dtu.dk/www/jaj/
http://www.elektro.dtu.dk/
http://www.elektro.dtu.dk/
mailto: jaj@elektro.dtu.dk
http://server.elektro.dtu.dk/www/jaj/field/

CONTENTS

1 Introduction 3

2 Program organization 5

3 Method of simulation 7
3.1 The spatial impulse response . 7
3.2 Simulation . 7
3.3 Focusing and apodization . 8
3.4 Attenuation . 8

4 Installation 9

5 Description of Matlab procedures 11
5.1 List of current procedures . 11
5.2 Procedures for Field initialization . 13
5.3 Procedures for transducer definition . 17
5.4 Procedures for element manipulation . 45
5.5 Procedures for field calculation . 50

6 Examples 59
6.1 Phased array imaging . 59
6.2 Linear array imaging . 61
6.3 Flow data generation . 64

Bibliography 66

i

ii

LIST OF FIGURES

5.1 Concave, round transducer with a radius of 8 mm divided into 1 by 1 mm mathematical elements. . . 19

5.2 Rectangles for a convex array with Rconvex equal to 20 mm. 21

5.3 Rectangles for an elevation focused, convex array with Rfocus equal to 10 mm and Rconvex equal to
30 mm. 22

5.4 Rectangles for an elevation focused, multi-row, convex array with Rfocus equal to 7 mm and Rconvex
equal to 30 mm. 24

5.5 Rectangles for an elevation focused, linear array with Rfocus equal to 15 mm. 26

5.6 Rectangles for an elevation focused, multi-row linear array with Rfocus equal to 10 mm and 5 rows. . 27

5.7 Display of the geometry and apodization of a linear array transducer. 30

5.8 Rectangles for a 16 elements linear array transducer. 32

5.9 Geomtery of multi-row linear array transducer. Currently x and y has been switched. 33

5.10 Rectangles for a 16 by 5 elements multi-row transducer. 34

5.11 Piston transducer with a radius of 8 mm divided into 1 by 1 mm mathematical elements. 36

5.12 Fully populated two-dimensional array with 11 by 13 elements. 43

5.13 Partially populated two-dimensional array with 23 elements. 44

5.14 Linear array transducer with a fixed apodization of the mathematical elements. 46

5.15 Intensity profile for linear array transducer with an elevation focus lens. 47

5.16 Example of calculated response when using different physical element excitations. 49

5.17 Received voltage traces from the individual elements of a 16 elements linear array transducer, when
transmitting with three different elements. 55

5.18 Received voltage traces from the individual elements of a linear array transducer (top) and the sum of
all the individual responses (bottom). 57

1

2

CHAPTER

ONE

Introduction

This is the user guide for the version 3.20 of November 19, 2010 of the Field II program. This version of the program
runs under Matlab 71 and can simulate all kinds ultrasound transducers and the associated images. The focusing and
apodization of the transducers can be controlled dynamically, and it is, thus, possible to simulate all kinds of ultrasound
imaging systems. The latest version can also be used for synthetic aperture imaging.

The program is free for use, if you make a proper reference to the papers describing the program, when you publish
results from its use. The reference are [1] and [2]. Also the name of the program (Field II) should be mentioned in the
publication. Some unfortunately forget this, and the program will only stay in the public domain, if people continue
to properly acknowledge its use.

This guide is intended as a presentation of the currently available routines. It includes a few examples and gives a
small amount of background information. It is, however, not intended as an introduction to ultrasound scanning, and
the reader should consult the extensive literature on this.

The program executables can be downloaded from the Web-site for the program:

http://server.elektro.dtu.dk/www/jaj/field/

It currently exist for a number of platforms like Windows, Linux, HP-UX, Sun and SGI. The availability of the latest
version is dependent on my access to machines, which often varies, and all working versions cannot be guaranteed.

The web site also contains more extensive examples than are given in this guide, and up-to-date references and papers
can also be found on the web-site.

The manual is made as a clickable pdf document with hyperlinks. All links are indicated in blue, and when clicked on
will lead to the indicated references, which can be a web-site, figure, equation, etc.

The manual is organized as follows: Chapter 2 gives an overview of the organization of the program and how it is
connected to Matlab. Chapter 4 details the installation from the programs on the web-site. A listing of all procedures
callable in the program is given in Chapter 5 and finally a few examples are given in 6. More can be found on the web.

Jørgen Arendt Jensen
March 22, 2011
Department of Electrical Engineering, Build. 349,
Technical University of Denmark
DK-2800 Lyngby, Denmark
E-mail: jaj@elektro.dtu.dk

1Older versions can be found on the web-site for Matlab 4, 5 and 6

3

http://server.elektro.dtu.dk/www/jaj/field/
http://server.elektro.dtu.dk/www/jaj/field/
http://www.es.oersted.dtu.dk/staff/jaj/field/
http://server.elektro.dtu.dk/www/jaj/
http://www.elektro.dtu.dk/
http://www.elektro.dtu.dk/
mailto: jaj@elektro.dtu.dk

4

CHAPTER

TWO

Program organization

The program consists of a C program and a number of Matlab m-functions that calls this program. All calculations
are performed by the C program, and all data is kept by the C program.

Three types of m-functions are found. The are used for initializing the program, defining and manipulating transducers,
and for performing calculations. The initializing routines are preceeded by field , the transducer commands by xdc ,
and the calculation routines by calc . Help on use of the routines can be obtained by typing help <routine name>.
Each of the routines are described in the following section and then three examples of use are given. The first shows
how a phased array image is generated, the second simulates a flow system, and the last example is for a linear array
system. The last example uses a computer generated phantom. The m-file for this phantom is also given in the example
section.

5

6

CHAPTER

THREE

Method of simulation

3.1 The spatial impulse response

The Field program system uses the concept of spatial impulse responses as developed by Tupholme and Stepanishen
in a series of papers [9, 10, 11]. The approach relies on linear systems theory to find the ultrasound field for both
the pulsed and continuous wave case. This is done through the spatial impulse response. This response gives the
emitted ultrasound field at a specific point in space as function of time, when the transducer is excitated by a Dirac
delta function. The field for any kind of excitation can then be found by just convolving the spatial impulse response
with the excitation function. The impulse response will vary as a function of position relative to the transducer, hence
the name spatial impulse response.

The received response from a small oscillating sphere can be found by acoustic reciprocity. The spatial impulse
response equals the received response for a spherical wave emitted by a point. The total received response in pulse-
echo can, thus, be found by convolving the transducer excitation function with the spatial impulse response of the
emitting aperture, with the spatial impulse response of the receiving aperture, and then taking into account the electro-
mechanical transfer function of the transducer to yield the received voltage trace. An explanation and rigorous proof
of this can be found in [14] and [15].

Any excitation can be used, since linear systems theory is used. The result for the continuous wave case is found by
Fourier transforming the spatial impulse response for the given frequency. The approach taken here can, thus, yield all
the diffent commenly found ultrasound fields for linear propagation.

3.2 Simulation

A number of different authors have calculated the spatial impulse response for different transducer geometries. But in
general it is difficult to calculate a solution, and especially if apodization of the transducer is taken into account. Here
the transducer surface does not vibrate as a piston, e.g. the edges might vibarte less then the center. The simulation
program circumvents this problem by dividing the transducer surface into squares and the sum the response of these
squares to yield the response. Thereby any tranducer geometry and any apodization can be simulated. The approach
is described in [1].

The time for one simulation is also of major concern. As the squares making up the tranducer apertue are small, it is
appropriate to use a far-field approximation, making simulation simple. Another issue in keeping the simulation time
down is to use a low sampling frequency. Often spatial impulse responses are calculated using sampling frequencies
in the GHz range due to the sharp discontinuities of the responses. These discontinuities are handled in the Field
programs by accurately keeping track of the time position of the responses and uses the integrated spatial impulse
response as an intermediate step in the calculations. Thereby no energy is lost in the response, which is far more
important than having an exact shape of the spatial impulse response. Hereby the Field program ususally does better
using 100 MHz sampling and approximate calculations, than using the exact analytic expression and GHz sampling.

7

3.3 Focusing and apodization

The focusing and apodization is handled in the program through time lines as:

Focusing: From time Focus at
0 x1, y1, z1
t1 x1, y1, z1
t2 x2, y2, z2
...

...

Apodization: From time Apodize with
0 a1,1, a1,2, · · · a1,Ne

t1 a1,1, a1,2, · · · a1,Ne

t2 a2,1, a2,2, · · · a2,Ne

t3 a3,1, a3,2, · · · a3,Ne

...
...

For each focal zone there is an associated focal point and the time from which this focus is used. The arrival time from
the field point to the physical transducer element is used for deciding which focus is used. The focusing can also be
set to be dynamic, so that the focus is changed as a function of time and thereby depth. The focusing is then set as a
direction defined by two angles and a starting point on the aperture.

All the time values for focusing are calculated relative to a point on the aperture. Initially this is set to (0, 0, 0). It can
be set to other values through the procedure xdc center focus. This is used in linear array imaging, where the origin
of the emitted and received beam is moved over the aperture. The focusing values are calculated by:

ti =
1

c

(√
(xc − xf)2 + (yc − yf)2 + (zc − zf)2 −

√
(xi − xf)2 + (yi − yf)2 + (zi − zf)2

)
(3.1)

where (xf , yf , zf) is the position of the focal point, (xc, yc, zc) is the reference center point on the aperture for the
focus as set by xdc center focus, (xi, yi, zi) is the center for the physical element number i, c is the speed of sound,
and ti is the calculated delay time. The value is then quantized, if that is set for the aperture.

The time line method is employed for the apodization, where the time decides which apodization vector is used. The
vector holds one apodization value for each physical element.

3.4 Attenuation

Frequency dependent attenuation can be included in the simulation by using the procedure set field. The attenuation
is included through a frequency dependent term and a frequency independent term. The frequency dependent term
is linearized through a center frequency att f0, so that the attenuation is zero dB at att f0. This is done to make the
inclusion of the attenuation computationally efficient. The variation in distance over the aperture of the frequency
dependent attenuation is usually not significant, and therefore only the frequency independent attenuation is varied
over the aperture. The frequency dependent attenuation is then included on the response by using the mean distance
to the aperture.

The attenuation is assumed to be minimum phase.

8 Chapter 3. Method of simulation

CHAPTER

FOUR

Installation

The excutable code for the program can be obtained free of charge from the web-site:

http://server.elektro.dtu.dk/www/jaj/field/

Here the mex-file to run under Matlab and the m-files for calling the mex-files can be found. Versions are currently
found for Linux (Intel processors, 32 and 64 bits), MAC OS and Windows 32 and 64 bits. Older versions are found
for HP-UX (PA-RISC processors), SUN (OS4.1 and Solaris), DEC ALPHA, Silicon Graphics, IBM AIX, but they are
no longer supported. Matlab 7.0 or higher is required to run the program, but older versions from Matlab 5 and on are
also found on the web-site.

The individual files can be found at the web-site along with compressed Unix-style tar-files. A zip file also exits for the
windows version. The tar-file should be downloaded to the directory, that must hold the files. The file is then extracted
by writing:

gzip -d <name_of_tar_file>.tar.Z
tar -xvf <name_of_tar_file>.tar

to uncompress and extract the file. The tar-file can then be deleted.

The program can now be run from this directory or from an other directory by writing:

path(path,’/home/user/field_II/m_files’);
field_init

where /home/user/field II/m files contains the Field II m-files. This ensure that the directory is included in the Matlab
search path, and the user-written m-files can then be placed in a separate file.

9

http://server.elektro.dtu.dk/www/jaj/field/

10

CHAPTER

FIVE

Description of Matlab procedures

5.1 List of current procedures

General commands

Function name Purpose Page
field debug Initialize debugging 13
field end Terminate the Field II program system and release the storage 13
field guide Display the Field II users guide in Acrobat reader 13
field info Display information about the state of the Field II program system 13
field init Initialize the Field II program system 14
set sampling Set the sampling frequency the system uses 15
set field Set various parameters for the program 16

Transducer commands

Function name Purpose Page
xdc apodization Create an apodization time line for an aperture. 17
xdc baffle Set the baffle condition for the aperture. 17
xdc center focus Set the origin for the dynamic focusing line. 18
xdc concave Define a concave aperture. 18
xdc convert Convert rectangular description to triangular description. 19
xdc convex array Create a convex array transducer. 20
xdc convex focused array Create an elevation focused convex array transducer. 20
xdc convex focused multirow Create an elevation focused convex, multi-row trans-

ducer.
22

xdc dynamic focus Use dynamic focusing for an aperture 23
xdc excitation Set the excitation pulse of an aperture. 24
xdc focus Create a focus time line for an aperture. 25
xdc focused array Create an elevation focused linear array transducer. 25
xdc focused multirow Create an elevation focused linear, multi-row transducer. 26
xdc focus times Creating a focus time line for an aperture with all delay

values supplied by the user.
28

xdc free Free storage occupied by an aperture. 28
xdc get Get information about an aperture. 28
xdc impulse Set the impulse response of an aperture. 30
xdc linear array Create a linear array transducer. 31
xdc linear multirow Create a linear multi-row array transducer. 31

11

Function name Purpose Page
xdc lines Create an aperture bounded by a set of lines. 34
xdc piston Define a round, flat aperture. 36
xdc quantization Set quantization of the phase delays. 37
xdc rectangles Procedure for creating an aperture consisting of rectangles. 38
xdc show Show information about an aperture. 39
xdc times focus Creating a focus time line for an aperture with all delay values supplied

by the user.
40

xdc triangles Make a multi-element aperture consisting of triangles. 41
xdc 2d array Create a two-dimensional array transducer. 41

Element manipulation commands

Function name Purpose Page
ele apodization Set the apodization for individual mathematical elements. 45
ele delay Set the delay for individual mathematical elements. 46
ele waveform Set the waveform for individual physical elements. 47

Field calculation commands

Function name Purpose Page
calc h Calculate the spatial impulse response. 50
calc hhp Calculate the pulse echo field. 51
calc hp Calculate the emitted field. 52
calc scat Calculate the received signal from a collection of scatterers. 53
calc scat all Calculate the received signals from a collection of scatterers for all

transmit and receive elements in the aperture.
53

calc scat multi Calculate the received signals from a collection of scatterers for all the
elements in the aperture.

55

12 Chapter 5. Description of Matlab procedures

5.2 Procedures for Field initialization

Field II user’s guide field debug

Purpose: Procedure for initialize debugging. This will print out various information about the programs inner
working. Initially no debugging is done.

Calling: field debug(state)

Input: State - 1: debugging, 0: no debugging.

Output: none.

Field II user’s guide field end

Purpose: Procedure for terminating the Field II program system and releasing the storage.

Calling: field end ;

Input: none.

Output: none.

Field II user’s guide field guide

Purpose: Procedure for displaying the Field II users’ guide (this guide) using the Adobe acrobat reader.

Calling: field guide

Input: none.

Output: The Field II guide is displayed in a separate window using acrobat reader.

Note that the Adobe pdf reader must be installed on the system, and it must be accessible under Matlab under the name
acroread. The users guide should be in the search path of Matlab, preferrably in the same directory as the m-files for
Field II with the name users guide.pdf.

Field II user’s guide field info

Purpose: Procedure for showing information about the Field II program. The information is printed in the Matlab
window.

Calling: field info

5.2. Procedures for Field initialization 13

Input: None.

Output: Information is printed in the Matlab window.

For boolean variables a value of 1 indicates true and 0 for false.

Example: Print the information:

field_info

Current Field II configuration:

Version 2.88, December 14, 2001 (Matlab version)

Number of apertures in operation: 3
Apertures to be defined uses rectangles: 0
Apertures to be defined uses triangles: 0
Apertures to be defined uses bounding lines: 1

Program uses accuracte time calculation for rectangles: 0
Program uses fast integration for lines and triangles: 1

Speed of sound: 1540.0000 m/s
Sampling frequency: 100.0000 MHz
Whether to use attenuation: 0
Frequency independent attenuation is: 0.0000 dB/m
Frequency dependent attenuation around 0.0000 MHz is 0.0000 dB/[m Hz]
Constant tau_m used in attenuation calculation: 20.0000

Number of bytes reserved: 12024
Maximum number of bytes that has been reserved: 22924
Number for next signal to be used: 60656
Internal state of the program: 1
Debug mode enabled: 0
Last calculation type done: 0
Whether calculation time should be shown: 1
Seconds between showing times 5 s

A boolean value of 1 indicates true, 0 indicates false

Field II user’s guide field init

Purpose: Procedure for initializing the Field II program system. Must be the first routine that is called before using
the system.

Calling: field init (suppress) ;

Input: suppress An optional argument suppress with a value of zero can be given to suppress the
display of the initial field screen.
No ACII ouput will be given, if the argument is -1. Debug messages will be written if
enable by field debug, and all error messages will also be printed.

Output: none.

14 Chapter 5. Description of Matlab procedures

Initial values: The following initial values are used by the program after field init has been called:

Variable Content Value
c Speed of sound 1540 m/s
fs Sampling frequency 100 · 106 Hz
show times Whether to print information about the time taken for the

calculation (yes = any positive numer). A number large
than 2 is taken as the time in seconds between the printing
of estimates.

debug Whether to show debuging information 0 (no)
use att Whether to use attenuation 0 (no)
att Frequency independent attenuation 0.0 dB/m.
freq att Frequency dependent attenuation in around the center fre-

quency att f0
0.0 dB/[m Hz]

att f0 Attenuation center frequency in Hz 0.0 Hz
use rectangles Whether to use rectangles for describing apertures 1 (yes)
use triangles Whether to use triangles for describing apertures 0 (no)
use lines Whether to use lines for describing apertures 0 (no)
no ascii output Whether ASCII output is not printed 0 (no, output is printed)
fast integration Whether to use fast integration for bound lines and trian-

gles
0 (no)

Initially the program is set to use rectangles for the modeling of transducers. All of the options can be changed by the
procedure set field.

Example: Include the Field II m-files in Matlab’s search path and start the Field II simulation system:

path(path,’/home/user/field_II/m_files’);
field_init

Field II user’s guide set sampling

Purpose: Set the sampling frequency the system uses.

Remember that the pulses used in all apertures must be reset for the new sampling frequency to take effect.

This procedure has been superseed by set field, and it is for portability reasons better to use set field.

Calling: set sampling (fs);

Input: fs - The new sampling frequency.

Output: none.

5.2. Procedures for Field initialization 15

Field II user’s guide set field

Purpose: Set various parameters that determins the function of the program.

Calling: set field (option name, value);

Input: use att Whether to use attenuation (<> 0 for attenuation)
att Frequency independent attenuation in dB/m.
freq att Frequency dependent attenuation in dB/[m Hz] around the center frequency

att f0.
att f0 Attenuation center frequency in Hz.
debug Whether to print debug information (1 = yes)
c Set the speed of sound in m/s.
fs Set the sampling frequency.
show time Show calculation times during calculation. (yes = any positive numer). A

number large than 2 is taken as the time in seconds between the printing of
estimates.

use rectangles Use rectangles for the apertures. (1 = yes)
use triangles Use triangles for describing apertures. (1 = yes)
use lines Use lines for describing apertures. (1 = yes)
fast integration Whether to use fast integration (1) of the responses for bound lines and tri-

angles. Fast integration uses a simple trapezoidal time integration of the re-
sponses, else a Romberg integration, as described in Numerical Receipes, are
used.

Output: none.

Example: Set the attenuation to 1.5 dB/cm and 0.5 dB/[MHz cm] around 3 MHz and use this:

set_field (’att’,1.5*100);
set_field (’Freq_att’,0.5*100/1e6);
set_field (’att_f0’,3e6);
set_field (’use_att’,1);

Note that the frequency independent and the frequency dependent terms should correspond, so that the frequency
independent attenuation is the same as the frequency dependent term at the center frequency set. This is ensured if
att = Freq att*att f0, else the attenuation can be too big or too low at large depths in tissue.

16 Chapter 5. Description of Matlab procedures

5.3 Procedures for transducer definition

Field II user’s guide xdc apodization

Purpose: Procedure for creating an apodization time line for an aperture

Calling: xdc apodization (Th, times, values);

Input: Th Pointer to the transducer aperture.
times Time after which the associated apodization is valid.
values Apodization values. Matrix with one row for each time value and a number of columns

equal to the number of physical elements in the aperture. At least one apodization
value in each row must be different from zero.

Output: none.

Field II user’s guide xdc baffle

Purpose: Procedure for setting the baffle condition for the aperture.

Calling: xdc baffle (Th, soft baffle);

Input: Th Pointer to the transducer aperture.
soft baffle Whether to use the soft-baffle condition:

1 - using soft baffle
0 - using rigid baffle (default for apertures)

Output: none.

Implementation:
For a soft baffle, in which the pressure on the baffle surface is zero, the Rayleigh-Sommerfeld integral is used instead
of the standard Rayleigh integral. This is:

hs(~r1, t) =

∫
S

δ(t− |~r1−~r2|
c)

2π | ~r1 − ~r2 |
cosϕ dS (5.1)

Here cosϕ is the angle between the line through the field point orthogonal to the aperture plane and the radius of the
spherical wave. The angles ϕ is fixed for a given radius of the projected spherical wave and thus for a given time. It is
given by

cosϕ =
zp
R

=
zp
ct

(5.2)

I can be shown that
hs(~r1, t) =

zp
ct
h(~r1, t). (5.3)

where h(~r1, t) is the standard spatial impulse response. The spatial impulse response for the soft baffle case is, thus,
be found from the normal spatial impulse response by multiplying with zp/(ct), which is the method employed by the
Field II program.

Example:

5.3. Procedures for transducer definition 17

Create a 16 elements linear array, and divide the physical elements into 2 by 3 mathematical elements to increase the
accuracy of the simulation. Then set the soft-baffle boundary condition.

% Set initial parameters

height=5/1000; % Height of element [m]
width=1/1000; % Width of element [m]
kerf=width/4; % Distance between transducer elements [m]
N_elements=16; % Number of elements
focus=[0 0 40]/1000; % Initial electronic focus

% Define the transducer

Th = xdc_linear_array (N_elements, width, height, kerf, 2, 3, focus);

% Set the soft-baffle option

xdc_soft_baffle (Th, 1);

Field II user’s guide xdc center focus

Purpose: Procedure for setting the center point for the focusing. This point is used as a reference for calculating
the focusing delay times and as a starting point for dynamic focusing.

Calling: xdc center focus (Th, point);

Input: Th Pointer to the transducer aperture.
point Focus center point.

Output: none.

Field II user’s guide xdc concave

Purpose: Procedure for creating a concave transducer

Calling: Th = xdc concave (radius, focal radius, ele size);

Input: radius Radius of physical elements.
focal radius Focal radius.
ele size Size of mathematical elements.

Output: Th A pointer to this transducer aperture.

Example of transducer definition:
Create a concave, round transducer with an 8 mm radius and a focal radius of 20 mm and divided it into 1 mm
mathematical elements.

% Set initial parameters

18 Chapter 5. Description of Matlab procedures

−5 0 5
0
1

y [mm]

z
[m

m
]

−5 0 5
−8

−6

−4

−2

0

2

4

6

8

x [mm]

y
[m

m
]

−5

0

5

−5

0

5

0
1

x [mm]y [mm]

z
[m

m
]

Figure 5.1: Concave, round transducer with a radius of 8 mm divided into 1 by 1 mm mathematical elements.

R=8/1000; % Radius of transducer
Rfocal=20/1000; % Focal radius of transducer
ele_size=1/1000; % Size of mathematical elements

% Define the transducer

Th = xdc_concave (R, Rfocal, ele_size);

The resulting transducer is shown in Fig. 5.1.

Field II user’s guide xdc convert

Purpose: Procedure for converting an aperture from a rectangular description to a triangular description.

Calling: xdc convert (Th);

Input: Th Aperture to be converted.

Output: None.

Note: The number of mathematical elements gets to be twice as large since one rectangle is modeled by two
triangles.

5.3. Procedures for transducer definition 19

Field II user’s guide xdc convex array

Purpose: Procedure for creating a convex array aperture.

Calling: Th = xdc convex array (no elements, width, height, kerf, Rconvex, no sub x, no sub y, focus);

Input: no elements Number of physical elements.
width Width in x-direction of elements.
height Width in y-direction of elements.
kerf Distance in x-direction between elements.
Rconvex Convex radius.
no sub x Number of sub-divisions in x-direction of elements.
no sub y Number of sub-divisions in y-direction of elements.
focus[] Fixed focus for array (x,y,z). Vector with three elements.

Output: Th A pointer to this transducer aperture.

Example of transducer definition:
Create a 16 element convex array with a convex radius of 20 mm:

% Set initial parameters

height=5/1000; % Height of element [m]
width=1/1000; % Width of element [m]
kerf=width/4; % Distance between transducer elements [m]
N_elements=16; % Number of elements
Rconvex=20/1000; % Convex radius [m]
focus=[0 0 40]/1000; % Initial electronic focus

% Define the transducer

Th = xdc_convex_array (N_elements, width, height, kerf,
Rconvex, 1, 5, focus);

Note that the radii are quite small in order to show the aperture curvature. The resulting aperture is shown below.

Field II user’s guide xdc convex focused array

Purpose: Procedure for creating a mechanical elevation focused convex array aperture.

Calling: Th = xdc convex focused array (no elements, width, height, kerf, Rconvex, Rfocus, no sub x,
no sub y, focus);

20 Chapter 5. Description of Matlab procedures

−2 −1 0 1 2

−2

−1.5

−1

−0.5

y [mm]

z
[m

m
]

−5 0 5
−2

0

2

x [mm]

y
[m

m
]

−5 0 5
−2−1.5−1−0.5

x [mm]

z
[m

m
]

−5

0

5

−2
0

2

−2−1.5−1−0.5

x [mm]
y [mm]

z
[m

m
]

Figure 5.2: Rectangles for a convex array with Rconvex equal to 20 mm.

Input: no elements Number of physical elements.
width Width in x-direction of elements.
height Width in y-direction of elements.
kerf Distance in x-direction between elements.
Rconvex Convex radius.
Rfocus Radius of elevation focus.
no sub x Number of sub-divisions in x-direction of elements.
no sub y Number of sub-divisions in y-direction of elements.
focus[] Fixed focus for array (x,y,z). Vector with three elements.

Output: Th A pointer to this transducer aperture.

Limitations: The kerf and width of the elements must lie within the range: π*Rconvex<=(kerf*(no elements-
1)+width*no elements). Also all parameters for physical dimensions (width, height, kerf, Rconvex, Rfocus) must be
positive.

Example of transducer definition: :
Create a 32 element elevation focused, convex array with an elevation focus at 10 mm and a convex radius of 30 mm:

% Set initial parameters

height=10/1000; % Height of element [m]
width=1.9/1000; % Width of element [m]
kerf=width/2; % Distance between transducer elements [m]
N_elements=32; % Number of elements
Rfocus=5/1000; % Elevation focus [m]
Rconvex=30/1000; % Convex radius [m]
focus=[0 0 70]/1000; % Initial electronic focus

% Define the transducer

5.3. Procedures for transducer definition 21

−5 0 5

−25

−20

−15

−10

−5

y [mm]
z

[m
m

]

−20 −10 0 10 20
−5

0

5

x [mm]

y
[m

m
]

−20 −10 0 10 20

−25

−20

−15

−10

−5

x [mm]

z
[m

m
]

−20
−10

0
10

20

−5
0

5

−25
−20
−15
−10

−5

x [mm]
y [mm]

z
[m

m
]

Figure 5.3: Rectangles for an elevation focused, convex array with Rfocus equal to 10 mm and Rconvex equal to 30
mm.

Th = xdc_convex_focused_array (N_elements, width, height, kerf,
Rconvex, Rfocus, 2, 10, focus);

Note that the radii are quite small in order to show the aperture curvature. The resulting aperture is shown below.

Notice also that the physical elements must be subdised in order to model the curvature of the array.

Field II user’s guide xdc convex focused multirow

Purpose: Procedure for creating a mechanical elevation focused convex array, where the array has been divided
into a number of rows.

Calling: Th = xdc convex focused multirow (no elements, width, heights, kerf, Rconvex, Rfocus, no sub x,
no sub y, focus);

22 Chapter 5. Description of Matlab procedures

Input: no elem x Number of physical elements in x-direction.
width Width in x-direction of elements.
no elem y Number of physical elements in y-direction.
heights[] Heights of the element rows in the y-direction. Vector with no elem y values.
kerf x Width in x-direction between elements.
kerf y Gap in y-direction between elements.
Rconvex Convex radius.
Rfocus Radius of elevation focus.
no sub x Number of sub-divisions in x-direction of elements.
no sub y Number of sub-divisions in y-direction of elements.
focus[] Fixed focus for array (x, y, z). Vector with three elements.

Output: Th A pointer to this transducer aperture.

Limitations: The kerf and width of the elements must lie within the range: π*Rconvex<=(kerf*(no elements-
1)+width*no elements). The combined heghts mus obey: sum(heights)+(no elem y-1)*kerf y)>2*Rfocus. Also
all parameters for physical dimensions (width, height, kerf, Rconvex, Rfocus) must be positive.

Example of transducer definition: :
Create a 20 element elevation focused, convex array with 5 rows. The elevation focus is at 10 mm and the convex
radius is 30 mm:

% Set initial parameters

heights=[1 2 3 2 1]/1000; % Height of element [m]
width=3/1000; % Width of element [m]
kerf_x=width/3; % Distance between transducer elements [m]
kerf_y=1/1000; % Distance between transducer elements [m]
N_elem_x=20; % Number of elements in x-direction
Rconvex=30/1000; % Convex radius [m]
Rfocus=7/1000; % Elevation focus [m]
focus=[0 0 70]/1000; % Initial electronic focus [m]

% Define the transducer

Th = xdc_convex_focused_multirow (N_elem_x, width, length(heights), ...
heights, kerf_x, kerf_y, Rconvex, Rfocus, 2, 3, focus);

Note that the radii are quite small in order to show the aperture curvature. The resulting aperture is shown below.

Notice also that the physical elements must be subdised in order to model the curvature of the array.

Field II user’s guide xdc dynamic focus

Purpose: Procedure for using dynamic focusing for an aperture.

Calling: xdc dynamic focus (Th, time, dir zx, dir zy);

5.3. Procedures for transducer definition 23

−5 0 5

−20

−15

−10

−5

y [mm]

z
[m

m
]

−20 −10 0 10 20
−5

0

5

x [mm]

y
[m

m
]

−20 −10 0 10 20

−20

−15

−10

−5

x [mm]

z
[m

m
]

−20
−10

0
10

20

−5
0

5

−20

−15

−10

−5

x [mm]
y [mm]

z
[m

m
]

Figure 5.4: Rectangles for an elevation focused, multi-row, convex array with Rfocus equal to 7 mm and Rconvex
equal to 30 mm.

Input: Th Pointer to the transducer aperture.
time Time after which the dynamic focus is valid.
dir zx Direction (angle) in radians for the dynamic focus. The direction is taken from the

center for the focus of the transducer in the z-x plane.
dir zy Direction (angle) in radians for the dynamic focus. The direction is taken from the

center for the focus of the transducer in the z-y plane.

Output: none.

Field II user’s guide xdc excitation

Purpose: Procedure for setting the excitation pulse of an aperture

Calling: xdc excitation (Th, pulse);

Input: Th Pointer to the transducer aperture.
pulse Excitation pulse of aperture as row vector

Output: none.

Field II user’s guide xdc focus

24 Chapter 5. Description of Matlab procedures

Purpose: Procedure for creating a focus time line for an aperture

Calling: xdc focus (Th, times, points);

Input: Th Pointer to the transducer aperture.
times Time after which the associated focus is valid.
points Focus points. Vector with three columns (x,y,z) and one row for each field point.

Output: none.

Field II user’s guide xdc focused array

Purpose: Procedure for creating an elevation focused linear array transducer.

Calling: Th = xdc focused array (no elements, width, height, kerf, Rfocus, no sub x, no sub y, focus);

Input: no elements Number of physical elements.
width Width in x-direction of elements.
height Width in y-direction of elements.
kerf Distance in x-direction between elements.
Rfocus Radius of elevation focus.
no sub x Number of sub-divisions in x-direction of elements.
no sub y Number of sub-divisions in y-direction of elements.
focus[] Fixed focus for array (x,y,z). Vector with three elements.

Output: Th A pointer to this transducer aperture.

Example:
Create a 20 element elevation focused, linear array with an elevation focus at 15 mm:

% Set initial parameters

height=15/1000; % Height of element [m]
width=1.9/1000; % Width of element [m]
kerf=width/3; % Distance between transducer elements [m]
N_elements=20; % Number of elements
Rfocus=15/1000; % Elevation focus [m]
focus=[0 0 70]/1000; % Initial electronic focus

% Define the transducer

Th = xdc_focused_array (N_elements, width, height, kerf, ...
Rfocus, 1, 10, focus);

Note that the radii are quite small in order to show the aperture curvature. The resulting aperture is shown below.

Notice also that the physical elements must be subdised in order to model the curvature of the array.

5.3. Procedures for transducer definition 25

−5 0 5
−2

−1.5
−1

−0.5

y [mm]
z

[m
m

]

−20 −10 0 10 20

−5

0

5

x [mm]

y
[m

m
]

−20 −10 0 10 20
−2−1.5−1−0.5

x [mm]

z
[m

m
]

−20
−10

0
10

20

−5
0

5

−2−1.5−1−0.5

x [mm]
y [mm]

z
[m

m
]

Figure 5.5: Rectangles for an elevation focused, linear array with Rfocus equal to 15 mm.

Field II user’s guide xdc focused multirow

Purpose: Procedure for creating a linear, elevation focused array transducer with an number of rows (1.5D array)

Calling: Th = xdc focused multirow (no elem x, width, no elem y, heights, kerf x, kerf y, Rfocus, no sub x,
no sub y, focus);

Input: no elem x Number of physical elements in x-direction.
width Width in x-direction of elements.
no elem y Number of physical elements in y-direction.
heights[] Heights of the element rows in the y-direction. Vector with no elem y values.
kerf x Width in x-direction between elements.
kerf y Gap in y-direction between elements.
Rfocus Radius of elevation focus.
no sub x Number of sub-divisions in x-direction of elements.
no sub y Number of sub-divisions in y-direction of elements.
focus[] Fixed focus for array (x, y, z). Vector with three elements.

Output: Th A pointer to this transducer aperture.

Example:
Create a 6 element elevation focused, multi-row, linear array with an elevation focus at 10 mm:

% Set initial parameters

heights=[1 2 3 2 1]/1000; % Height of element [m]
width=1.9/1000; % Width of element [m]
kerf_x=width/5; % Distance between transducer elements [m]

26 Chapter 5. Description of Matlab procedures

−5 0 5
−1−0.8−0.6−0.4−0.2

y [mm]
z

[m
m

]

−5 0 5

−5

0

5

x [mm]

y
[m

m
]

−5 0 5
−1−0.8−0.6−0.4−0.2

x [mm]

z
[m

m
]

−5

0

5

−5

0

5
−1−0.8−0.6−0.4−0.2

x [mm]y [mm]

z
[m

m
]

Figure 5.6: Rectangles for an elevation focused, multi-row linear array with Rfocus equal to 10 mm and 5 rows.

kerf_y=0.5/1000; % Distance between transducer elements [m]
N_elem_x=6; % Number of elements in x-direction
Rfocus=15/1000; % Elevation focus
focus=[0 0 70]/1000; % Initial electronic focus

% Define the transducer

Th = xdc_focused_multirow (N_elem_x, width, length(heights), heights, ...
kerf_x, kerf_y, Rfocus, 2, 5, focus);

Note that the radii are quite small in order to show the aperture curvature. The resulting aperture is shown below.

Notice also that the physical elements must be subdised in order to model the curvature of the array.

5.3. Procedures for transducer definition 27

Field II user’s guide xdc focus times and xdc times focus

Purpose: Procedure for creating a focus time line for an aperture. All the delay values are supplied by the user.
The previous time line is replaced by this time line.

Note that the two procedures perform the same operation. xdc times focus has been adde due to compatability with
the PC version of Field, and should be the procedure generally used.

Calling: xdc focus times (Th, times, delays); or xdc times focus (Th, times, delays);

Input: Th Pointer to the transducer aperture.
times Time after which the associated focus is valid.
delays Delay values. Matrix with one row for each time value and a number of columns equal

to the number of physical elements in the aperture.

Output: none.

Field II user’s guide xdc free

Purpose: Procedure for freeing the storage occupied by an aperture

Calling: xdc free(Th);

Input: Th Pointer to the transducer aperture.

Output: none.

Field II user’s guide xdc get

Purpose: Procedure for getting data for an aperture

Calling: data = xdc get(Th, info type);

Input: Th Pointer to the transducer aperture.
info type Which information to get (text string). The possibilities are:

rect information about rectangular elements
tri information about triangular elements
focus focus time line
apo apodization time line

Output: data data about the aperture

For each mathematical rectangle in the aperture is returned one column of data containing:

28 Chapter 5. Description of Matlab procedures

Row number Information
1 Number for the physical element in the aperture.
2 Number for the mathematical element in this physical element.
3 Width of the mathematical element [m]
4 Height of the mathematical element [m].
5 Apodization of the mathematical element [m]. Note this is the fixed apodization value

set on the mathematical element and not the dynmaic one from the apodization time
line set by xdc apodization.

6 Tangens of the angle with the xz-plane.
7 Tangens of the angle with the yz-plane.
8-10 Position of center (x, y, z) of the mathematical element [m].
11-22 Corners (x, y, z) of the mathematical element [m].
23 Delay value of the mathematical element [s].
24-26 Position of center (x, y, z) of the physical element [m].

For each mathematical triangle in the aperture is returned one column of data containing:

Row number Information
1 Number for the physical element in the aperture.
2 Number for the mathematical element in this physical element.
3 Apodization of the mathematical element [m].
4-6 Position of center (x, y, z) of the mathematical element [m].
7-15 Corners (x, y, z) of the mathematical element [m].

A matrix with the focusing information is returned, when info type=”focus”. The matrix contains one column for
each focal zone, with the first element indicating the starting time for the focus values and the values following are the
time delays for each of the physical elements.

A matrix with the apodizations is returned, when info type=”apo”. The matrix contains one column for each apodiza-
tion zone, with the first element indicating the starting time for the apodization selection and the data following are
the apodization value for each of the physical elements.

Example:
The geometry and static apodization of an aperture can be shown with the following code:

% Show the transducer surface in a surface plot
%
% Calling: show_xdc(Th)
%
% Argument: Th - Transducer handle
%
% Return: Plot of the transducer surface on the current figure
%
% Bote this version onlys shows the defined rectangles
%
% Version 1.1, June 29, 1998, JAJ

function res = show_xdc (Th)

% Do it for the rectangular elements

colormap(cool(128));
data = xdc_get(Th,’rect’);
[N,M]=size(data);

% Do the actual display

5.3. Procedures for transducer definition 29

−3
−2

−1
0

1
2

3

−2

−1

0

1

2

−1

0

1

x [mm]y [mm]

z
[m

m
]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.7: Display of the geometry and apodization of a linear array transducer.

for i=1:M
x=[data(11,i), data(20,i); data(14,i), data(17,i)]*1000;
y=[data(12,i), data(21,i); data(15,i), data(18,i)]*1000;
z=[data(13,i), data(22,i); data(16,i), data(19,i)]*1000;
c=data(5,i)*ones(2,2);
hold on

surf(x,y,z,c)
end

% Put som axis legends on

Hc = colorbar;
view(3)
xlabel(’x [mm]’)
ylabel(’y [mm]’)
zlabel(’z [mm]’)
grid
axis(’image’)
hold off

An example of the output is shown in Fig. 5.7.

Field II user’s guide xdc impulse

30 Chapter 5. Description of Matlab procedures

Purpose: Procedure for setting the impulse response of an aperture.

Calling: xdc impulse (Th,pulse);

Input: Th Pointer to the transducer aperture.
pulse Impulse response of aperture as row vector.

Output: none.

Field II user’s guide xdc linear array

Purpose: Procedure for creating a linear array aperture.

Calling: Th = xdc linear array (no elements, width, height, kerf, no sub x, no sub y, focus);

Input: no elements Number of physical elements.
width Width in x-direction of elements.
height Width in y-direction of elements.
kerf Distance in x-direction between elements.
no sub x Number of sub-divisions in x-direction of elements.
no sub y Number of sub-divisions in y-direction of elements.
focus[] Fixed focus for array (x,y,z). Vector with three elements.

Output: Th A pointer to this transducer aperture.

Example of transducer definition:
Create a 16 elements linear array, and divide the physical elements into 2 by 3 mathematical elements to increase the
accuracy of the simulation.

% Set initial parameters

height=5/1000; % Height of element [m]
width=1/1000; % Width of element [m]
kerf=width/4; % Distance between transducer elements [m]
N_elements=16; % Number of elements
focus=[0 0 40]/1000; % Initial electronic focus

% Define the transducer

Th = xdc_linear_array (N_elements, width, height, kerf, 2, 3, focus);

The resulting array without the subdivions is shown in Fig. 5.8.

Field II user’s guide xdc linear multirow

Purpose: Procedure for creating a linear multi-row array aperture, where the transducer has been diced to create a
two-dimensional matrix of elements. The individual rows can have different heights.

Calling: Th = xdc linear multirow (no elem x, width, no elem y, heights, kerf x, kerf y, no sub x,
no sub y, focus);

5.3. Procedures for transducer definition 31

−8 −6 −4 −2 0 2 4 6 8

−2

−1

0

1

2

x [mm]

y
[m

m
]

−5

0

5

−2
0

2

−1
0
1

x [mm]

y [mm]

z
[m

m
]

Figure 5.8: Rectangles for a 16 elements linear array transducer.

Input: no elem x Number of physical elements in x-direction.
width Width in x-direction of elements.
no elem y Number of physical elements in y-direction.
heights[] Heights of the element rows in the y-direction. Vector with no elem y values.
kerf x Width in x-direction between elements.
kerf y Gap in y-direction between elements.
no sub x Number of sub-divisions in x-direction of physical elements.
no sub y Number of sub-divisions in y-direction of physical elements.
focus[] Fixed focus for array (x, y, z). Vector with three elements.

Output: Th A pointer to this transducer aperture.

Geometry:
The geometry of the transducer is shown in Fig. 5.9 with definitions of the relevant parameters. The physical elements
are numbered consecutively starting with the one at the most negative x and y coordinate. The element number then
increase with increasing x and then with increasing y as shown on the figure. The same numbering scheme is used for
the mathematical elements that models the physical elements.

Example of transducer definition:
Create a 16 by 5 elements multirow array, and divide the physical elements into 2 by 3 mathematical elements to
increase the accuracy of the simulation.

% Set initial parameters

heights=[1 2 3 2 1]/1000; % Height of element [m]
width=1.9/1000; % Width of element [m]
kerf_x=width/5; % Distance between transducer elements [m]

32 Chapter 5. Description of Matlab procedures

Figure 5.9: Geomtery of multi-row linear array transducer. Currently x and y has been switched.

kerf_y=0.5/1000; % Distance between transducer elements [m]
no_elem_x=16; % Number of elements in x-direction
no_elem_y=length(heights); % Number of elements in y-direction
focus=[0 0 70]/1000; % Initial electronic focus

% Define the transducer

Th = xdc_linear_multirow (no_elem_x, width, no_elem_y, heights, ...
kerf_x, kerf_y, 2, 3, focus);

The resulting array is shown in Fig. 5.10.

Example of setting apodization:
Setting a Hanning apodization for the array in the x-direction can be done by:

% The apodization for the aperture

apo=reshape(hanning(no_elem_x)*ones(1,no_elem_y),1,no_elem_x*no_elem_y);
xdc_apodization(Th, 0, apo);

Note how the apodization values have been packed with one value for each physical element. First a matrix of size
no elem x by no elem y is created, so that the Hanning weighting is the same for the elements in the y-direction
and varies in the x-direction. The matrix is then reshaped to a vector with no elem y*no elem x elements, that can
be used by the apodization routine. The setting of focus time values can be done in a similar fashion.

Field II user’s guide xdc lines

5.3. Procedures for transducer definition 33

−15 −10 −5 0 5 10 15

−5

0

5

x [mm]

y
[m

m
]

−15
−10

−5
0

5
10

15

−5

0

5

−1
0
1

x [mm]
y [mm]

z
[m

m
]

Figure 5.10: Rectangles for a 16 by 5 elements multi-row transducer.

Purpose: Procedure for creating an aperture bounded by a set of lines.

Calling: Th = xdc lines (lines, center, focus);

Input: lines Information about the lines. One row for each line. The contents is:

Index Variable Value
1 no phys The number for the physical element starting from one
2 no mat The number for the mathematical element starting from

one
3 slope Slope of line (NaN is infinity slope)
4 infinity True if slope is infinity
5 intersect Intersection with y-axis (slope<>NaN) or x-axis if slope

is infinity
6 above Whether the active aperture is above or to the left (for

infinite slope) of the line

center The center of the physical elements. One line for each element starting from 1.
focus The fixed focus for this aperture.

All dimensions are in meters.

Notice that this procedure will only work for flat elements positioned in the x-y plane.

Output: A handle Th as a pointer to this transducer aperture.

Example: Make a two element transducer aperture with elements 4 mm wide and 10 mm tall. The elements are
center at (0,0,0) mm and (4.5, 0, 0) mm. Display information about the aperture after it has been created:

34 Chapter 5. Description of Matlab procedures

lines =[1 1 NaN 1 2/1000 1
1 1 0 0 5/1000 0
1 1 NaN 1 -2/1000 0
1 1 0 0 -5/1000 1
2 1 NaN 1 6.5/1000 1
2 1 0 0 5/1000 0
2 1 NaN 1 2.5/1000 0
2 1 0 0 -5/1000 1];

center=[0 0 0; 4.5/1000 0 0];
focus=[0 0 70]/1000;
Th = xdc_lines (lines, center, focus);
xdc_show(Th)

5.3. Procedures for transducer definition 35

−5 0 5
−8

−6

−4

−2

0

2

4

6

8

x [mm]

y
[m

m
]

−5

0

5

−5

0

5

−1
0
1

x [mm]y [mm]

z
[m

m
]

Figure 5.11: Piston transducer with a radius of 8 mm divided into 1 by 1 mm mathematical elements.

Field II user’s guide xdc piston

Purpose: Procedure for creating a flat, round transducer

Calling: Th = xdc piston (radius, ele size);

Input: radius Radius of physical elements.
ele size Size of mathematical elements.

Output: Th A pointer to this transducer aperture.

Example of transducer definition:
Create a piston transducer with an 8 mm radius and divided into 1 mm mathematical elements.

% Set initial parameters

R=8/1000; % Radius of transducer
ele_size=1/1000; % Size of mathematical elements

% Define the transducer

Th = xdc_piston (R,ele_size);

The resulting transducer is shown in Fig. 5.11.

Field II user’s guide xdc quantization

36 Chapter 5. Description of Matlab procedures

Purpose: Procedure for setting the minimum quantization interval that can be used when phasing the transducer.

Remember that the focus time lines must be set again for the quantization to take effect. This setting does not affect
the user calculated delays.

Calling: xdc quantization (Th, min delay);

Input: Th Pointer to the transducer aperture.
min delay The smallest delay in seconds that can be used by the system. No quantization is used,

if this delay is set to zero.

Output: none.

5.3. Procedures for transducer definition 37

Field II user’s guide xdc rectangles

Purpose: Procedure for creating an aperture consisting of rectangles.

Calling: Th = xdc rectangles (rect, center, focus);

Input: rect Information about the rectangles. One row for each rectangle. The contents is:

Index Variable Value
1 no The number for the physical aperture starting from one

2-4 x1,y1,z1 First corner coordinate
5-7 x2,y2,z2 Second corner coordinate
8-10 x3,y3,z3 Third corner coordinate
11-13 x4,y4,z4 Fourth corner coordinate

14 apo Apodization value for this element.
15 width Width of the element (x direction)
16 heigth Height of the element (y direction)

17-19 c1,c2,c2 Center point of the rectangle

The corner coordiantes points must be in a sorted order, so that they are meet in clock-
wise order when going from 1 to 2 to 3 to 4. The rectangle number given must also be
in increasing order.

center The center of the physical elements. One line for each element starting from 1.
focus The fixed focus for this aperture.

All dimensions are in meters.

Output: A handle Th as a pointer to this transducer aperture.

Example: Make a one element transducer aperture with a 4 mm wide and 10 mm tall element. The element is
center at (0,0,0) mm. Display information about the aperture after it has been created:

rect=[1 0/1000 0/1000 0 2/1000 0/1000 0 2/1000 5/1000 0 0/1000 5/1000 0 ...
1 2/1000 5/1000 1/1000 2.5/1000 0

1 -2/1000 0/1000 0 0/1000 0/1000 0 0/1000 5/1000 0 -2/1000 5/1000 0 ...
1 2/1000 5/1000 -1/1000 2.5/1000 0

1 -2/1000 -5/1000 0 0/1000 -5/1000 0 0/1000 0/1000 0 -2/1000 0/1000 0 ...
1 2/1000 5/1000 -1/1000 -2.5/1000 0

1 0/1000 -5/1000 0 2/1000 -5/1000 0 2/1000 0/1000 0 0/1000 0/1000 0 ...
1 2/1000 5/1000 1/1000 -2.5/1000 0];

center=[0 0 0];
focus=[0 0 70]/1000;
Th = xdc_rectangles (rect, center, focus);
xdc_show(Th)

38 Chapter 5. Description of Matlab procedures

Field II user’s guide xdc show

Purpose: Procedure for showing information about an aperture.

Calling: xdc show(Th, info type);

Input: Th Pointer to the transducer aperture.
info type Which information to show (text string). The possibilities are:

elements - information about elements
focus - focus time line
apo - apodization time line
all - all information is shown

The argument is optional, and by default all information is shown.

Output: ASCII output on the screen about the aperture

Example: The call to show the focus delays is: xdc show(Th,’focus’);

5.3. Procedures for transducer definition 39

Field II user’s guide xdc focus times and xdc times focus

Purpose: Procedure for creating a focus time line for an aperture. All the delay values are supplied by the user.
The previous time line is replaced by this time line.

Note that the two procedures perform the same operation. xdc times focus has been adde due to compatability with
the PC version of Field, and should be the procedure generally used.

Calling: xdc focus times (Th, times, delays); or xdc times focus (Th, times, delays);

Input: Th Pointer to the transducer aperture.
times Time after which the associated focus is valid.
delays Delay values. Matrix with one row for each time value and a number of columns equal

to the number of physical elements in the aperture.

Output: none.

40 Chapter 5. Description of Matlab procedures

Field II user’s guide xdc triangles

Purpose: Procedure for creating a multi-element aperture consisting of triangles.

Calling: Th = xdc triangles (data, center, focus);

Input: data Information about the triangles. One row for each triangle. The contents is:

Index Variable Value
1 no The number for the physical aperture starting from one

2-4 x1,y1,z1 First corner coordinate
5-7 x2,y2,z2 Second corner coordinate
8-10 x3,y3,z3 Third corner coordinate
11 apo Apodization value for this element.

The physical element number given must be in increasing order.
center The center of the physical elements. One line for each element starting from 1.
focus The fixed focus for this aperture.

All dimensions are in meters.

Output: A handle Th as a pointer to this transducer aperture.

Example: Make a two element transducer aperture with a 4 mm wide and 10 mm tall elements. Display information
about the aperture after it has been created:

data=[
1 -0.00405 -0.0050 0 -0.00405 0 0 -0.00205 0 0 1
1 -0.00405 -0.0050 0 -0.00205 -0.0050 0 -0.00205 0 0 1
1 -0.00205 -0.0050 0 -0.00205 0 0 -0.00005 0 0 1
1 -0.00205 -0.0050 0 -0.00005 -0.0050 0 -0.00005 0 0 1
1 -0.00405 0 0 -0.00405 0.0050 0 -0.00205 0.0050 0 1
1 -0.00405 0 0 -0.00205 0 0 -0.00205 0.0050 0 1
1 -0.00205 0 0 -0.00205 0.0050 0 -0.00005 0.0050 0 1
1 -0.00205 0 0 -0.00005 0 0 -0.00005 0.0050 0 1
2 0.00005 -0.0050 0 0.00005 0 0 0.00205 0 0 1
2 0.00005 -0.0050 0 0.00205 -0.0050 0 0.00205 0 0 1
2 0.00205 -0.0050 0 0.00205 0 0 0.00405 0 0 1
2 0.00205 -0.0050 0 0.00405 -0.0050 0 0.00405 0 0 1
2 0.00005 0 0 0.00005 0.0050 0 0.00205 0.0050 0 1
2 0.00005 0 0 0.00205 0 0 0.00205 0.0050 0 1
2 0.00205 0 0 0.00205 0.0050 0 0.00405 0.0050 0 1
2 0.00205 0 0 0.00405 0 0 0.00405 0.0050 0 1];

center=[-2.0500, 0.0000, 0.0000
2.0500, 0.0000, 0.0000]/1000;

focus=[0 0 70]/1000;
Th = xdc_triangles (data, center, focus);
xdc_show(Th)

Field II user’s guide xdc 2d array

Purpose: Procedure for creating a two-dimensional (sparse) array aperture.

Calling: Th = xdc 2d array (no ele x, no ele y, width, height, kerf x, kerf y,
enabled, no sub x, no sub y, focus);

5.3. Procedures for transducer definition 41

Input: no ele x Number of physical elements in x-direction.
no ele y Number of physical elements in y-direction.
width Width in x-direction of elements.
height Width in y-direction of elements.
kerf x Distance in x-direction between elements.
kerf y Distance in y-direction between elements.
enabled Matrix of size (no ele x, no ele y) indicating whether the physical element is used.

A 1 indicates an enabled element and zero that it is not. enable(1,1) determines the
state of the lower left element of the transducer when seen in the x− y plane.

no sub x Number of sub-divisions in x-direction of elements.
no sub y Number of sub-divisions in y-direction of elements.
focus[] Fixed focus for array (x, y, z). Vector with three elements.

Output: Th A pointer to this transducer aperture.

Example of transducer definition:
Create a fully populated two-dimensional array with 11 by 13 elements:

% Set initial parameters

height=1.5/1000; % Height of element [m]
width=1/1000; % Width of element [m]
kerf_x=width/5; % Distance between transducer elements [m]
kerf_y=height/2; % Distance between transducer elements [m]
no_ele_x=11; % Number of elements in x-direction
no_ele_y=13; % Number of elements in y-direction
focus=[0 0 60]/1000; % Initial electronic focus [m]

% Find which elements to use

enabled=ones(no_ele_x, no_ele_y);

% Define the transducer

Th = xdc_2d_array (no_ele_x, no_ele_y, width, height, ...
kerf_x, kerf_y, enabled, 1, 1, focus);

The resulting transducer is shown in Fig. 5.12.

Create a sparsely populated two-dimensional array arranged in the form of a cross:

% Set initial parameters

height=1.5/1000; % Height of element [m]
width=1/1000; % Width of element [m]
kerf_x=width/5; % Distance between transducer elements [m]
kerf_y=height/2; % Distance between transducer elements [m]
no_ele_x=11; % Number of elements in x-direction
no_ele_y=13; % Number of elements in y-direction
focus=[0 0 60]/1000; % Initial electronic focus [m]

% Find which elements to use

enabled=zeros(no_ele_x, no_ele_y);
enabled(:,7)=ones(no_ele_x,1);

42 Chapter 5. Description of Matlab procedures

−5 0 5

−10

−5

0

5

10

x [mm]

y
[m

m
]

−5
0

5

−10

−5

0

5

10

−1
0
1

x [mm]

y [mm]

z
[m

m
]

Figure 5.12: Fully populated two-dimensional array with 11 by 13 elements.

enabled(6,:)=ones(1,no_ele_y);

% Define the transducer

Th = xdc_2d_array (no_ele_x, no_ele_y, width, height, ...
kerf_x, kerf_y, enabled, 1, 1, focus);

The resulting transducer is shown in Fig. 5.13.

The elements for a sparsely populated array is stored in order starting with the element with the most negative x and
y coordinate, and then first increasing the x coordinate and then the y coordinate. This is the ordering that should be
used for delay values and apodization values. The ordering can also be viewed by the routine xdc show.

5.3. Procedures for transducer definition 43

−5 0 5

−10

−5

0

5

10

x [mm]

y
[m

m
]

−5
0

5

−10

−5

0

5

10

−1
0
1

x [mm]

y [mm]

z
[m

m
]

Figure 5.13: Partially populated two-dimensional array with 23 elements.

44 Chapter 5. Description of Matlab procedures

5.4 Procedures for element manipulation

Field II user’s guide ele apodization

Purpose: Procedure for setting the apodization of individual mathematical elements making up the transducer.
This apodization is also multiplied onto the spatial impulse response for the mathematical element regardless of the
value of the apodization of the physical element and its dynamic apodization.

Calling: ele apodization (Th, element no, apo);

Input: Th Pointer to the transducer aperture.
element no Column vector with one integer for each physical element to set apodization for.
apo Apodization values. Matrix with one row for each physical element and a number of

columns equal to the number of mathematical elements in the aperture.

Output: none.

Example: Define a linear array with 10 elements, where each element is divided into 4 by 10 mathematical
elements. Then set the apodization of the mathematical elements to have a Hanning window apodization in the y-
direction.

% Set initial parameters

f0=3e6; % Transducer center frequency [Hz]
fs=100e6; % Sampling frequency [Hz]
c=1540; % Speed of sound [m/s]
lambda=c/f0; % Wavelength [m]
height=5/1000; % Height of element [m]
width=lambda; % Width of element [m]
kerf=width/4; % Distance between transducer elements [m]
N_elements=10; % Number of elements
no_sub_x=4; % Number of sub-divisions in x-direction of elements.
no_sub_y=10; % Number of sub-divisions in y-direction of elements.
focus=[0 0 40]/1000; % Initial electronic focus

% Define the transducer

Th = xdc_linear_array (N_elements, width, height, kerf, ...
no_sub_x, no_sub_y, focus);

% Set the apodization for the individual mathematical elements

element_no=(1:N_elements)’;
hann=hanning(no_sub_y)’;
apo=ones(N_elements,1)*reshape(ones(no_sub_x,1)*hann, 1, no_sub_x*no_sub_y);
ele_apodization (Th, element_no, apo);

The resulting transducer and apodization is shown in Fig. 5.14. The colorbar on the right hand side of the figure
indicates the apodization value.

5.4. Procedures for element manipulation 45

−2 0 2

−2

−1

0

1

2

x [mm]

y
[m

m
]

0.2

0.4

0.6

0.8

−2

0

2

−2

0

2

−1

0

1

x [mm]y [mm]

z
[m

m
]

0.2

0.4

0.6

0.8

Figure 5.14: Linear array transducer with a fixed apodization of the mathematical elements.

Field II user’s guide ele delay

Purpose: Procedure for setting the delay of individual mathematical elements making up the transducer. This can
be used to model a fixed lens in front of the aperture.

Calling: ele delay (Th, element no, delays);

Input: Th Pointer to the transducer aperture.
element no Column vector with one integer for each physical element to set delay for.
delays Delay values. Matrix with one row for each physical element and a number of columns

equal to the number of mathematical elements in the aperture.

Output: none.

Example: Define a linear array with 10 elements, where each element is divided into 1 by 21 mathematical
elements. Then set the delay of the mathematical elements to have an elevation focus at 30 mm from the aperture.

% Set initial parameters

f0=3e6; % Transducer center frequency [Hz]
fs=100e6; % Sampling frequency [Hz]
c=1540; % Speed of sound [m/s]
lambda=c/f0; % Wavelength [m]
height=10/1000; % Height of element [m]
width=lambda; % Width of element [m]
kerf=width/4; % Distance between transducer elements [m]
N_elements=32; % Number of elements
no_sub_x=1; % Number of sub-divisions in x-direction of elements.
no_sub_y=21; % Number of sub-divisions in y-direction of elements.
focus=[0 0 80]/1000; % Initial electronic focus

46 Chapter 5. Description of Matlab procedures

0 20 40 60 80 100 120 140 160 180
0

50

100

150

Axial distance [mm]
In

te
ns

ity
: I

sp
ta

 [
m

W
/c

m
2]

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

Axial distance [mm]

P
ea

k
pr

es
su

re
 [M

P
a]

Figure 5.15: Intensity profile for linear array transducer with an elevation focus lens.

% Define the transducer

Th = xdc_linear_array (N_elements, width, height, kerf, ...
no_sub_x, no_sub_y, focus);

% Set the apodization for the individual mathematical elements

element_no=(1:N_elements)’;
y=((0:(no_sub_y-1))-(no_sub_y-1)/2)/no_sub_y*height;
zf=30/1000;
basic_delay=(zf-sqrt(y.ˆ2+zf.ˆ2))/c;
delays=ones(N_elements,1)*reshape(ones(no_sub_x,1)*basic_delay,

1, no_sub_x*no_sub_y);
ele_delay (Th, element_no, delays);

An example of the resulting intensity profile is shown in Fig. 5.15.

Field II user’s guide ele waveform

Purpose: Procedure for setting the waveform of individual physical elements of the transducer. This can be used
to model that the different elements are excitet by different waveforms.

Calling: ele waveform (Th, element no, samples);

5.4. Procedures for element manipulation 47

Input: Th Pointer to the transducer aperture.
element no Column vector with one integer for each physical element to set delay for.
samples Sample values for waveform. Matrix with one row for each physical element and a

number of columns equal to the number of samples in the waveforms.

Output: none.

Example: Define a linear array with 2 elements, where each physical element is excitet differently.

f0=3e6; % Transducer center frequency [Hz]
f1=1e6; % Test frequency 1 [Hz]
f2=10e6; % Test frequency 2 [Hz]
fs=100e6; % Sampling frequency [Hz]
c=1540; % Speed of sound [m/s]
lambda=c/f0; % Wavelength [m]
height=10/1000; % Height of element [m]
width=lambda; % Width of element [m]
kerf=width/4; % Distance between transducer elements [m]
N_elements=2; % Number of elements
no_sub_x=1; % Number of sub-divisions in x-direction of elements.
no_sub_y=1; % Number of sub-divisions in y-direction of elements.
focus=[0 0 80]/1000; % Initial electronic focus

% Define the transducer

Th = xdc_linear_array (N_elements, width, height, kerf, ...
no_sub_x, no_sub_y, focus);

% Set the waveforms

waveform1=sin(2*pi*f1*(0:1/fs:4/f1));
element_no=1;
ele_waveform (Th, element_no, waveform1);
waveform2=sin(2*pi*f2*(0:1/fs:4/f2));
element_no=2;
ele_waveform (Th, element_no, waveform2);

% calculate the field to see the effekt

[h,t] = calc_h (Th,[0 0 60]/1000);
plot((0:length(h)-1)/fs+t,h)
ylabel(’Response’)
xlabel(’Time [s]’)

An example of the resulting response is shown in Fig. 5.16.

48 Chapter 5. Description of Matlab procedures

3.85 3.9 3.95 4 4.05 4.1 4.15 4.2 4.25 4.3 4.35

x 10
−5

−1500

−1000

−500

0

500

1000

1500

2000

2500

3000

R
es

po
ns

e

Time [s]

Figure 5.16: Example of calculated response when using different physical element excitations.

5.4. Procedures for element manipulation 49

5.5 Procedures for field calculation

Field II user’s guide calc h

Purpose: Procedure for calculating the spatial impulse response for an aperture.

Calling: [h, start time] = calc h(Th,points);

Input: Th Pointer to the transducer aperture.
points Field points. Vector with three columns (x,y,z) and one row for each field point.

Output: h Spatial impulse response in m/s.
start time The time for the first sample in h.

50 Chapter 5. Description of Matlab procedures

Field II user’s guide calc hhp

Purpose: Procedure for calculating the pulse echo field.

Calling: [hhp, start time] = calc hhp(Th1, Th2, points);

Input: Th1 Pointer to the transmit aperture.
Th2 Pointer to the receive aperture.
points Field points. Vector with three columns (x,y,z) and one row for each field point.

Output: hhp Received voltage trace.
start time The time for the first sample in hhp.

5.5. Procedures for field calculation 51

Field II user’s guide calc hp

Purpose: Procedure for calculating the emitted field.

Calling: [hp, start time] = calc hp(Th, points);

Input: Th Pointer to the transmit aperture.
points Field points. Vector with three columns (x,y,z) and one row for each field point.

Output: hp Emitted pressure field.
start time The time for the first sample in field.

52 Chapter 5. Description of Matlab procedures

Field II user’s guide calc scat

Purpose: Procedure for calculating the received signal from a collection of scatterers.

Calling: [scat, start time] = calc scat(Th1, Th2, points, amplitudes);

Input: Th1 Pointer to the transmit aperture.
Th2 Pointer to the receive aperture.
points Scatterers. Vector with three columns (x,y,z) and one row for each scatterer.
amplitudes Scattering amplitudes. Row vector with one entry for each scatterer.

Output: scat Received voltage trace.
start time The time for the first sample in scat.

Field II user’s guide calc scat all

Purpose: Procedure for calculating the received signal from a collection of scatterers and for each combination of
ttransmit and receive elements in the aperture. This corresponds to a full synthetic aperture scan, with each element
transmitting and all elements receiving. Note that the raw data is calculated. No focusing or apodization is employed
on the data and this has to be done on the data afterwards.

Note that this routine can give a lot of data, when many elements are used. A 32 elements transducer gives 1024 signals.
The data can therefore be decimated after calculation of the response. This still gives exactly the same response, but
with fewer samples in the result. It just has to be ensured that the decimated sampling frequency (fs/dec factor) is
large enough to not give aliasing in the response.

Calling: [scat, start time] = calc scat all (Th1, Th2, points, amplitudes, dec factor);

Input: Th1 Pointer to the transmit aperture.
Th2 Pointer to the receive aperture.
points Scatterers. Vector with three columns (x,y,z) and one row for each scatterer.
dec factor Decimation factor for the output sampling rate. The sampling frequency is then

fs/dec factor, where fs is the sampling frequency set in the program. The factor must
be an integer.

amplitudes Scattering amplitudes. Row vector with one entry for each scatterer.

Output: scat Received voltage trace. The matrix is organized with one received signal for each
receiving element and this is repeated for all transmitting element, so the first signal
is transmitting with element one and receiving with element one. The transmitting
with element one receiving with element two and so forth. The it is repeated with
transmitting element 2, etc.

start time The time for the first sample in scat.

Example: Calculate the received response from all elements of a linear array with 3 transmitting and 16 receiving
elements and plot the responses and the summed response (see Fig. 5.17).

% Set initial parameters

f0=3e6; % Transducer center frequency [Hz]
fs=100e6; % Sampling frequency [Hz]
c=1540; % Speed of sound [m/s]
lambda=c/f0; % Wavelength [m]

5.5. Procedures for field calculation 53

height=5/1000; % Height of element [m]
width=1/1000; % Width of element [m]
kerf=width/5; % Distance between transducer elements [m]
N_elements=3; % Number of elements
N_elements2=16; % Number of elements
focus=[0 0 40]/1000; % Initial electronic focus

% Define the transducers

Th = xdc_linear_array (N_elements, width, height, kerf, 2, 3, focus);
Th2 = xdc_linear_array (N_elements2, width, height, kerf, 2, 3, focus);

% Set the impulse response and excitation of the emit aperture

impulse_response=sin(2*pi*f0*(0:1/fs:2/f0));
impulse_response=impulse_response.*hanning(max(size(impulse_response)))’;
xdc_impulse (Th, impulse_response);
xdc_impulse (Th2, impulse_response);

excitation=sin(2*pi*f0*(0:1/fs:2/f0));
xdc_excitation (Th, excitation);

% Define a small phantom with scatterers

N=200; % Number of scatterers
x_size = 20/1000; % Width of phantom [mm]
y_size = 10/1000; % Transverse width of phantom [mm]
z_size = 20/1000; % Height of phantom [mm]
z_start = 5/1000; % Start of phantom surface [mm];

% Create the general scatterers

x = (rand (N,1)-0.5)*x_size;
y = (rand (N,1)-0.5)*y_size;
z = rand (N,1)*z_size + z_start;
positions=[x y z];

% Generate the amplitudes with a Gaussian distribution

amp=randn(N,1);

% Do the calculation

[v,t]=calc_scat_all (Th, Th2, positions, amp, 1);

% Plot the individual responses

[N,M]=size(v);
scale=max(max(v));
v=v/scale;
for i=1:M

plot((0:N-1)/fs+t,v(:,i)+i,’b’), hold on
end

hold off

54 Chapter 5. Description of Matlab procedures

1 2 3 4

x 10
−5

0

5

10

15

20

25

30

35

40

45

Individual traces

Time [s]

N
or

m
al

iz
ed

 r
es

po
ns

e

Figure 5.17: Received voltage traces from the individual elements of a 16 elements linear array transducer, when
transmitting with three different elements.

title(’Individual traces’)
xlabel(’Time [s]’)
ylabel(’Normalized response’)
axis([t t+N/fs 0 M+1])

Field II user’s guide calc scat multi

Purpose: Procedure for calculating the received signal from a collection of scatterers and for each of the elements
in the receiving aperture.

Calling: [scat, start time] = calc scat multi(Th1, Th2, points, amplitudes);

Input: Th1 Pointer to the transmit aperture.
Th2 Pointer to the receive aperture.
points Scatterers. Vector with three columns (x,y,z) and one row for each scatterer.
amplitudes Scattering amplitudes. Row vector with one entry for each scatterer.

Output: scat Received voltage trace. One signal for each physical element in the receiving aperture.
start time The time for the first sample in scat.

Example: Calculate the received response from all elements of a linear array and plot the responses and the
summed response (see Fig. 5.18).

5.5. Procedures for field calculation 55

% Set initial parameters

f0=3e6; % Transducer center frequency [Hz]
fs=100e6; % Sampling frequency [Hz]
c=1540; % Speed of sound [m/s]
lambda=c/f0; % Wavelength [m]
height=5/1000; % Height of element [m]
width=1/1000; % Width of element [m]
kerf=width/4; % Distance between transducer elements [m]
N_elements=32; % Number of elements
focus=[0 0 40]/1000; % Initial electronic focus

% Define the transducer

Th = xdc_linear_array (N_elements, width, height, kerf, 2, 3, focus);

% Set the impulse response and excitation of the emit aperture

impulse_response=sin(2*pi*f0*(0:1/fs:2/f0));
impulse_response=impulse_response.*hanning(max(size(impulse_response)))’;
xdc_impulse (Th, impulse_response);

excitation=sin(2*pi*f0*(0:1/fs:2/f0));
xdc_excitation (Th, excitation);

% Do the calculation

[v,t]=calc_scat_multi (Th, Th, [0 0 20]/1000, 1);

% Plot the individual responses

subplot(211)
[N,M]=size(v);
v=v/max(max(v));
for i=1:N_elements

plot((0:N-1)/fs+t,v(:,i)+i), hold on
end

hold off
title(’Individual traces’)
xlabel(’Time [s]’)
ylabel(’Normalized response’)
subplot(212)
plot((0:N-1)/fs+t,sum(v’))
title(’Summed response’)
xlabel(’Time [s]’)
ylabel(’Normalized response’)

56 Chapter 5. Description of Matlab procedures

2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3 3.05 3.1

x 10
−5

0

5

10

15

20

25

30

Individual traces

Time [s]

N
or

m
al

iz
ed

 r
es

po
ns

e

2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3 3.05 3.1

x 10
−5

−4

−2

0

2

4
Summed response

Time [s]

N
or

m
al

iz
ed

 r
es

po
ns

e

Figure 5.18: Received voltage traces from the individual elements of a linear array transducer (top) and the sum of all
the individual responses (bottom).

5.5. Procedures for field calculation 57

58

CHAPTER

SIX

Examples

6.1 Phased array imaging

This examples shows how the procedures can be used for making a phased array scan of a point target.

% Example of use of the new Field II program running under Matlab
%
% This example shows how a phased array B-mode system scans an image
%
% This script assumes that the field_init procedure has been called
%
% Example by Joergen Arendt Jensen, Nov. 28, 1995.

% Generate the transducer apertures for send and receive

f0=3e6; % Transducer center frequency [Hz]
fs=100e6; % Sampling frequency [Hz]
c=1540; % Speed of sound [m/s]
lambda=c/f0; % Wavelength
element_height=5/1000; % Height of element [m]
kerf=0.1/1000; % Kerf [m]
focus=[0 0 70]/1000; % Fixed focal point [m]

% Generate aperture for emission

emit_aperture = xdc_linear_array (128, lambda/2, element_height, kerf, 1, 1,focus);

% Set the impulse response and excitation of the emit aperture

impulse_response=sin(2*pi*f0*(0:1/fs:2/f0));
impulse_response=impulse_response.*hanning(max(size(impulse_response)))’;
xdc_impulse (emit_aperture, impulse_response);

excitation=sin(2*pi*f0*(0:1/fs:2/f0));
xdc_excitation (emit_aperture, excitation);

% Generate aperture for reception

receive_aperture = xdc_linear_array (128, lambda/2, element_height, kerf, 1, 1,focus);

% Set the impulse response for the receive aperture

xdc_impulse (receive_aperture, impulse_response);

% Do phased array imaging

point_position=[0 0 70]/1000; % Position of the point to be imaged
no_lines=50; % Number of A-lines in image
sector=20 * pi/180; % Size of image sector

59

d_theta=sector/no_lines; % Increment in angle for 90 deg. image

% Pre-allocate some storage

image_data=zeros(800,no_lines);

theta= -sector/2;
for i=1:no_lines

% Set the focus for this direction

xdc_focus (emit_aperture, 0, [70*sin(theta) 0 70*cos(theta)]/1000);
xdc_focus (receive_aperture, 0, [70*sin(theta) 0 70*cos(theta)]/1000);

% Calculate the received response

[v, t1]=calc_scat(emit_aperture, receive_aperture, point_position, 1);

% Store the result

image_data(1:max(size(v)),i)=v’;
times(i) = t1;

% Steer in another angle

theta = theta + d_theta;
end

% Here the display of the data is inserted

plot(image_data)

60 Chapter 6. Examples

6.2 Linear array imaging

This examples shows how the procedures can be used for making a linear array scan of an artificial phantom.

% Example of use of the new Field II program running under Matlab
%
% This example shows how a linear array B-mode system scans an image
%
% This script assumes that the field_init procedure has been called
%
% Example by Joergen Arendt Jensen, Version 2.0, March 22, 2011.

% Generate the transducer apertures for send and receive

f0=3e6; % Transducer center frequency [Hz]
fs=100e6; % Sampling frequency [Hz]
c=1540; % Speed of sound [m/s]
lambda=c/f0; % Wave length [m]
width=lambda; % Width of element
element_height=5/1000; % Height of element [m]
kerf=width/20; % Kerf [m]
focus=[0 0 50]/1000; % Fixed focal point [m]
N_elements=192; % Number of elements in the transducer
N_active=64; % Active elements in the transducer

% Set the sampling frequency

set_sampling(fs);

% Generate aperture for emission

emit_aperture = xdc_linear_array (N_elements, width, element_height, kerf, 1, 5, focus);

% Set the impulse response and excitation of the emit aperture

impulse_response=sin(2*pi*f0*(0:1/fs:2/f0));
impulse_response=impulse_response.*hanning(max(size(impulse_response)))’;
xdc_impulse (emit_aperture, impulse_response);

excitation=sin(2*pi*f0*(0:1/fs:2/f0));
xdc_excitation (emit_aperture, excitation);

% Generate aperture for reception

receive_aperture = xdc_linear_array (N_elements, width, element_height, kerf, 1, 5, focus);

% Set the impulse response for the receive aperture

xdc_impulse (receive_aperture, impulse_response);

% Load the computer phantom

[phantom_positions, phantom_amplitudes] = cyst_phantom(10000);

% Do linear array imaging

no_lines=N_elements-N_active+1; % Number of A-lines in image
dx=width; % Increment for image
z_focus=50/1000;

% Pre-allocate some storage

image_data=zeros(1,no_lines);

for i=1:no_lines
i

6.2. Linear array imaging 61

% Find position for imaging

x=(i-1-no_lines/2)*dx;

% Set the focus for this direction

xdc_center_focus (emit_aperture, [x 0 0]);
xdc_focus (emit_aperture, 0, [x 0 z_focus]);
xdc_center_focus (receive_aperture, [x 0 0]);
xdc_focus (receive_aperture, 0, [x 0 z_focus]);

% Set the active elements using the apodization

apo=[zeros(1, i-1) hamming(N_active)’ zeros(1, N_elements-N_active-i+1)];
xdc_apodization (emit_aperture, 0, apo);
xdc_apodization (receive_aperture, 0, apo);

% Calculate the received response

[v, t1]=calc_scat(emit_aperture, receive_aperture, phantom_positions, phantom_amplitudes);

% Store the result

image_data(1:max(size(v)),i)=v;
times(i) = t1;
end

% Free space for apertures

xdc_free (emit_aperture)
xdc_free (receive_aperture)

% Adjust the data in time and display it as
% a gray scale image

min_sample=min(times)*fs;
for i=1:no_lines
rf_env=abs(hilbert([zeros(round(times(i)*fs-min_sample),1); image_data(:,i)]));
env(1:size(rf_env,1),i)=rf_env;
end

% make logarithmic compression to a 60 dB dynamic range
% with proper units on the axis

env_dB=20*log10(env);
env_dB=env_dB-max(max(env_dB));
env_gray=127*(env_dB+60)/60;
depth=((0:size(env,1)-1)+min_sample)/fs*c/2;
x=((1:no_lines)-no_lines/2)*dx;
image(x*1000, depth*1000, env_gray)
xlabel(’Lateral distance [mm]’)
ylabel(’Depth [mm]’)
axis(’image’)
colormap(gray(128))
title(’Image of cyst phantom (60 dB dynamic range)’)

6.2.1 Computer cyst phantom

Code for generating an artificial phantom with point scatterers and a cyst.

% Create a computer model of a cyst phantom. The phantom contains
% five point targets separated by 5 mm and a 10 mm water filled cyst.
% All scatterers are situated in a box of (x,y,z)=(40,10,50) mm.

62 Chapter 6. Examples

%
% Calling: [positions, amp] = cyst_phantom (N);
%
% Parameters: N - Number of scatterers in the phantom
%
% Output: positions - Positions of the scatterers.
% amp - amplitude of the scatterers.
%
% Version 1.1, March 22, 2011 by Joergen Arendt Jensen

function [positions, amp] = cyst_phantom (N)

x_size = 40/1000; % Width of phantom [m]
y_size = 10/1000; % Transverse width of phantom [m]
z_size = 50/1000; % Height of phantom [m]
z_start = 30/1000; % Start of phantom surface [m];

% Create the general scatterers

x = (rand (N,1)-0.5)*x_size;
y = (rand (N,1)-0.5)*y_size;
z = rand (N,1)*z_size + z_start;

% Generate the amplitudes with a Gaussian distribution

amp=randn(N,1);

% Make the cyst and set the amplitudes to zero inside

r=5/1000; % Radius of cyst [m]
xc=0/1000; % Place of cyst [m]
zc=25/1000+z_start;

inside = (((x-xc).ˆ2 + (z-zc).ˆ2) < rˆ2);
amp = amp .* (1-inside);

% Place the point scatterers in the phantom

dz=z_size/10;
for i=N-9:N
x(i) = -15/1000;
y(i) = 0;
z(i) = z_start + (i-N+9)*dz;
amp(i) = 100;
end

% Return the variables
positions=[x y z];
end

6.2. Linear array imaging 63

6.3 Flow data generation

This examples shows how the procedures can be used for making flow data from a number of scatteres in a tube.

% Example of use of the new Field II program running under Matlab
%
% This example shows how flow can simulated
%
% This script assumes that the field_init procedure has been called
%
% Example by Joergen Arendt Jensen, March 22, 2011.

% Generate the transducer apertures for send and receive

f0=3e6; % Transducer center frequency [Hz]
fs=100e6; % Sampling frequency [Hz]
c=1540; % Speed of sound [m/s]
lambda=c/f0; % Wavelength
element_height=5/1000; % Height of element [m]
kerf=0.1/1000; % Kerf [m]
focus=[0 0 70]/1000; % Fixed focal point [m]

% Generate aperture

aperture = xdc_linear_array (128, lambda/2, element_height, kerf, 1, 1,focus);

% Set the impulse response and excitation of the emit aperture

impulse_response=sin(2*pi*f0*(0:1/fs:2/f0));
impulse_response=impulse_response.*hanning(max(size(impulse_response)))’;
xdc_impulse (aperture, impulse_response);

excitation=sin(2*pi*f0*(0:1/fs:8/f0));
xdc_excitation (aperture, excitation);

% Set the seed of the random number generator

randn(’seed’,sum(100*clock))

% Initialize the ranges for the scatterers
% Notice that the coordinates are in meters

x_range=0.015; % x range for the scatterers [m]
y_range=0.015; % y range for the scatterers [m]
z_range=0.015; % z range for the scatterers [m]
z_offset=0.70; % Offset of the mid-point of the scatterers [m]
R=0.005; % Radius of blood vessel [m]

% Set the number of scatterers. It should be roughly
% 10 scatterers per resolution cell

c=1540; % Ultrasound propagation velocity [m/s]
f0=3e6; % Center frequency of transducer [Hz]
lambda=c/f0;
N=round(10*x_range/(5*lambda)*y_range/(5*lambda)*z_range/(lambda*2));
disp([num2str(N),’ Scatterers’])

% Generate the coordinates and amplitude
% Coordinates are rectangular within the range.
% The amplitude has a Gaussian distribution.

x=x_range*(rand(1,N)-0.5);
y=y_range*(rand(1,N)-0.5);
z=z_range*(rand(1,N)-0.5);

% Find which scatterers that lie within the blood vessel

64 Chapter 6. Examples

r=(y.ˆ2+z.ˆ2).ˆ0.5;
within_vessel= (r < R)’;

% Assign an amplitude and a velocity for each scatterer

v0=0.5; % Largest velocity of scatterers [m/s]
velocity=v0*(1-(r/R).ˆ2).*within_vessel’;

blood_to_stationary= 0.1; % Ratio between amplitude of blood to stationary tissue
amp=randn(N,1).*((1-within_vessel) + within_vessel*blood_to_stationary);

% Calculate a suitable Tprf

theta=45/180*pi;
f_max=2*v0*cos(theta)/c*f0;
fprf=3*f_max

Tprf=1/fprf; % Time between pulse emissions [s]
Nshoots=128; % Number of shoots

% Find the response by calling field

for i=1:Nshoots
i

% Generate the rotated and offset block of sample

xnew=x*cos(theta)+z*sin(theta);
znew=z*cos(theta)-x*sin(theta) + z_offset;
scatterers=[xnew; y; znew;]’ ;

% Calculate the received response

[v, t1]=calc_scat(aperture, aperture, scatterers, amp);

% Store the result

image_data(1:max(size(v)),i)=v;
times(i) = t1;

% Propagate the scatterers and alias them
% to lie within the correct range

x=x + velocity*Tprf;
outside_range= (x > x_range/2);
x=x - x_range*outside_range;
end

% Here the display of the data is inserted

plot(image_data)

6.3. Flow data generation 65

66

BIBLIOGRAPHY

[1] J. A. Jensen and N. B. Svendsen. Calculation of pressure fields from arbitrarily shaped, apodized, and excited
ultrasound transducers. IEEE Trans. Ultrason., Ferroelec., Freq. Contr., 39:262–267, 1992.

[2] J. A. Jensen. Field: A program for simulating ultrasound systems. Med. Biol. Eng. Comp., 10th Nordic-Baltic
Conference on Biomedical Imaging, Vol. 4, Supplement 1, Part 1:351–353, 1996b.

[3] S. A. Goss, R. L. Johnston, and F. Dunn. Comprehensive compilation of empirical ultrasonic properties of
mammalian tissues. J. Acoust. Soc. Am., 64:423–457, 1978.

[4] S. A. Goss, R. L. Johnston, and F. Dunn. Compilation of empirical ultrasonic properties of mammalian tissues
II. J. Acoust. Soc. Am., 68:93–108, 1980.

[5] M. J. Haney and W. D. O’Brien. Temperature dependency of ultrasonic propagation properties in biological
materials. In J. F. Greenleaf, editor, Tissue Characterization with Ultrasound. CRC Press, Boca Raton, Fla.,
1986.

[6] J. A. Jensen. Estimation of Blood Velocities Using Ultrasound: A Signal Processing Approach. Cambridge
University Press, New York, 1996.

[7] R. F. Wagner, S. W. Smith, J. M. Sandrick, and H. Lopez. Statistics of speckle in ultrasound B-scans. IEEE
Trans. Son. Ultrason., 30:156–163, 1983.

[8] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders. Fundamentals of Acoustics. John Wiley & Sons,
New York, third edition, 1982.

[9] G. E. Tupholme. Generation of acoustic pulses by baffled plane pistons. Mathematika, 16:209–224, 1969.

[10] P. R. Stepanishen. The time-dependent force and radiation impedance on a piston in a rigid infinite planar baffle.
J. Acoust. Soc. Am., 49:841–849, 1971.

[11] P. R. Stepanishen. Transient radiation from pistons in an infinite planar baffle. J. Acoust. Soc. Am., 49:1629–1638,
1971.

[12] A. D. Pierce. Acoustics, An Introduction to Physical Principles and Applications. Acoustical Society of America,
New York, 1989.

[13] P. M. Morse and K. U. Ingard. Theoretical Acoustics. McGraw-Hill, New York, 1968.

[14] P. R. Stepanishen. Pulsed transmit/receive response of ultrasonic piezoelectric transducers. J. Acoust. Soc. Am.,
69:1815–1827, 1981.

[15] J. A. Jensen. A model for the propagation and scattering of ultrasound in tissue. J. Acoust. Soc. Am., 89:182–191,
1991a.

67

	1 Introduction
	2 Program organization
	3 Method of simulation
	3.1 The spatial impulse response
	3.2 Simulation
	3.3 Focusing and apodization
	3.4 Attenuation

	4 Installation
	5 Description of Matlab procedures
	5.1 List of current procedures
	5.2 Procedures for Field initialization
	5.3 Procedures for transducer definition
	5.4 Procedures for element manipulation
	5.5 Procedures for field calculation

	6 Examples
	6.1 Phased array imaging
	6.2 Linear array imaging
	6.3 Flow data generation

	Bibliography

